
User's manual

Q l I T C D Acorn Computor Limited, 4a Market Hill, Cambridge,
r U I C K CB2 3MJ, Telephone (0223) 312772

CONTENTS
PART1
CHAPTER 1: AN INTRODUCTION TO THE BINARY NUMBER SYSTEM
1.1 BINARY NUMBERS
1.2 LOGICAL MANIPULATIONS
1.3 ARITHMETIC MANIPULATIONS
1.4 BINARY CODED DECIMAL (BCD) ARITHMETIC
CHAPTER 2: WELCOME TO THE MACHINE
2.1 HOW THE ACORN MICROPROCESSOR WORKS
2.2 THE MONITOR COMMANDS M, t , I .
2.3 AT LAST, A PROGRAM,

2.3.1 ASSEMBLY LANGUAGE, MACHINE LANGUAGE, THE INSTRUCTIONS
LOAD, STORE andJUMP

2.3.2 ENTERING A PROGRAM, THE GO COMMAND
2.3.3 INSTRUCTIONS JMP,JSR
2.3.4 LOGIC INSTRUCTIONS ORA AND EOR.
2.3.5 ARITHMETIC OPERATIONS: ADC, SEC, CLC

CHAPTER 3: INSIDE THE 6502
3.1 THE ACCUMULATOR, PROGRAM COUNTER, STATUS REGISTER
3.2 THE STACK POINTER,
3.3 THE INTERNAL REGISTERS X & Y
3.4 MAKING OUR PROGRAM 'FRIENDLY'
CHAPTER 4: THE REMAINDER OF THE INSTRUCTION SET
4.1 BRANCHES
4.2 INDEXING
4.3 INDIRECTION
4.4 R E A D - M O D I F Y - W R I T E INSTRUCTIONS
4.5 MISCELLANEOUS REMAINING INSTRUCTIONS
CHAPTER 5: ACORN HARDWARE
5.1 CHIP LAYOUT AND BUS
5.2 RESET, INTERRUPT REQUEST AND NON-MASKABLE INTERRUPT
5.3 6502 INTERNAL ARCHITECTURE
5.4 PROMS, EPROMS, RAM, RAM I/O
5.5 THE KEYBOARD AND TAPE INTERFACE
5.6 POWER SUPPLY
CHAPTER 6: FIRMWARE
6.1 THE TAPE STORE AND LOAD
6.2 THE BREAKPOINT AND RESTORE COMMAND
6.3 THE SINGLE STEPPING FACILITY
6.4 THE MONITOR LISTING
PART 2
APPLICATION PROGRAMS

APPENDICES
APPENDIX A: 64 CHARACTER ASCI I ON ACORN'S 7 SEGMENT

DISPLAY
APPENDIX B: INSTRUCTION SET
APPENDIX C: HEXADECIMAL TO DECIMAL CONVERSION TABLE
APPENDIX D: ACORN MONITOR ADDRESS INFORMATION

GLOSSARY

PART1
CHAPTER 1: AN INTRODUCTION TO THE BINARY NUMBER SYSTEM
1.1 BINARY NUMBERS:
NUMBERS IN EVERY DAY USE ARE WRITTEN IN THE DECIMAL SYSTEM, THAT
IS, TO THE NUMBER BASE 10. A POSITIONAL NOTATION IS USED
REPRESENTING ONE "I00's; TWO "I0's & EIGHT T s AS THE SYMBOL 128. THE
RIGHTMOST (i.e. LEAST SIGNIFICANT) DIGIT IS IN THE "UNITS" COLUMN, THE
2 INTHE 'TENS" COLUMN, THE 1 INTHE "HUNDREDS" COLUMN, AND THE
VALUE OF THE SYMBOL '128' IS EVALUATED AS 1x100+2x10 + 8x1 = 128.
SIMILARLY '1024' IS EVALUATED AS 1x1000 + 0x100 + 2x10 + 4x1 = 1024, WHICH
IS MORE CONVENIENTLY WRITTEN AS 1x103 +0x102 + 2x10* 4x10° = 1024,
USING THE MATHEMATICAL SHORTHAND FOR 1000= 10x10x10= 103 ,AND
THE CONVENTION "ANY NUMBER TO THE POWER ZERO IS 1 " TO GIVE A
CONSISTENT METHOD OF EVALUATING SUCH SYMBOLS.
SO 1024
CAN BE WRITTEN IN COLUMNS

3

1

2

0

1

2

0

4

AND EVALUATED AS 1x103 +0x102 + 2x10* +4x10°
TO THE BASE 10.
TO THE BASE 8,1024 WOULD MEAN 1x83 + 0x82 + 2x8* +4x8° WHICH IS THE
DECIMAL NUMBER 532.
TO THE BASE 16,1024 WOULD MEAN 1x163 + 0x162 + 2x161 +4x16° WHICH IS
THE DECIMAL NUMBER 4132.
TO DISTINGUISH THE BASE TO WHICH A NUMBER IS WRITTEN WE'LL WRITE
ITS' BASE AFTER IT AS A SUBSCRIPT: 10241O AND NOW WE CAN WRITE
1024* = 5321O|
102416 =4132 l 0 |
100000002 = 128! o
JUST AS BASE TEN HAS THE NAME 'DECIMAL', BASE SIXTEEN HAS THE NAME
'HEXADECIMAL', BASE EIGHT HAS THE NAME 'OCTAL' AND BASE TWO
'BINARY'. THESE FOUR BASES ARE IN COMMON USE WITH MODERN
COMPUTERS, ESPECIALLY HEXADECIMAL (HEX) AND BINARY. CONVERSION
BETWEEN BINARY, OCTAL & HEX NUMBERS IS VERY SIMPLE. SINCE THEY ARE
ALL POWERS OF TWO, NUMBERS JUST NEED DIVIDING UP:-
100000002= 1100011 00001! 6 = 8 0 i 6

= I010||000II000»6 =2008

- EACH HEX DIGIT IS FOUR BINARY DIGITS (BITS) & EACH OCTAL DIGIT IS
3 BITS.
OCTAL DIGITS ARE 0 , 1 , 2, 3, 4, 5, 6, 7.
HEX D I G I T S A R E 0 , 1 , 2 , 3 / 4 , 5 , 6 , 7 , 8 , 9 , A , B , C , D , E / F A....F ARE USED
INSTEAD OF 10....15 TO ALLOW UNRESTRICTED USE OF THE POSITIONAL
SYSTEM.

PROGRAM COUNTER: 16 BIT REGISTER WHICH CONTAINS THE ADDRESS OF
THE INSTRUCTION BEING EXECUTED. DURING EXECUTION THE
PROGRAM COUNTER ISSTEPPEDUPTOPOINTATTHE NEXT INSTRUCTION.

PROM: PROGRAMMABLE READ ONLY MEMORY. THIS TYPE OF MEMORY
ARRIVES BLANK. IT CAN BE PROGRAMMED BY THE USER WITH THE
HELP OF A SPECIAL PROM BLOWER. ONCE THIS PROGRAM HAS BEEN PUT
IN, IT CANNOT BE CHANGED.

RAM: RANDOM ACCESS MEMORY. THIS IS THE STANDARD READ/WRITE
MEMORY. DATA (AND PROGRAMS) ARE LOST WHEN THE POWER IS
SWITCHED OFF.

REGISTER: STORAGE LOCATION IN THE MICROPROCESSOR ITSELF. THERE
ARE INTERNAL REGISTERS A, X, Y, PC, S, P.

• ROM: READ ONLY MEMORY. THIS IS MEMORY THAT HAS A PROGRAM PUT
IN DURING PRODUCTION. THIS PROGRAM CANNOT EVER BE CHANGED,
IT CAN ONLY BE READ.

STORE: TRANSFERS DATA FROM AN INTERNAL REGISTER TO MEMORY.
XTAL: THE CRYSTAL IN THE ACORN OSCILLIATES AT 1 MHZ. i.e. ONE

MILLION TIMES A SECOND. IT DOES THIS WITH GREAT ACCURACY. SO
YOU CAN BUILD A CLOCK FROM YOUR ACORN.

HEX
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

10
20
40
64
80

100

CONVERSION
DECIMAL

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
32
64

100
128
256

TABLE
OCTAL

0
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
40

100
144
200
400

BINARY
0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

10000
100000

1000000
1100100

10000000
100000000

THE ACORN MICROPROCESSOR IS DESIGNED TO DEAL WITH 8 BITS AT A TIME.
THE COLLECTION OF 8 BITS IS GIVEN THE SPECIAL NAME 'BYTE', AND IS
NORMALLY WRITTEN IN HEXADECIMAL OR BINARY. A BYTE THUS IS 0....FF16;
0....111111112 OR 0....255io. THE MICROPROCESSOR CAN CARRY OUT LOGICAL
AND ARITHMETICAL MANIPULATIONS ON BYTES.
1.2 LOGICAL MANIPULATIONS
THE MICROPROCESSOR CAN IMMEDIATELY CARRY OUT THE LOGICAL AND,
EXCLUSIVE - OR & OR FUNCTIONS ON ALL 8 BITS SIMULTANEOUSLY, USING
THE FOLLOWING TRUTH TABLES FOR EACH BIT (SYMBOL V)
AND (A) EXCLUSIVE - OR (V) OR (V)

bi

0
0
1
1

b2

0
1
0
1

result
0
0
0
1

bi
0
0
1
1

b2

0
1
0
1

result
0
1
1
0

bi
0
0
1
1

b2

0
1 .
0
1

result
0
1
1
1

EXAMPLE
OPERANDS
00111100 00111100
01011010 AND 01011010

(OPERATOR)
00011000 RESULT 01100110

E-OR
00111100
01011010 OR

01111110

1.3 ARITHMETIC MANIPULATIONS

BINARY ADDITION
WITH CARRY OUTPUT

BINARY ADDITION WITH CARRY FROM RIGHT

b,
0
0
1
1

b2

0
1
0
1

SUM
0
1
1
0

CARRY
0
0
0
1

bi
0
0
1
1
0
0
1
1

b2

0
1
0
1
0
1
0
1

INPUT CARRY
0
0
0
0
1
1
1
1

SUM
0
1
1
0
1
0
0
1

OUTPUT CARRY TO LEFT
0
0
0
1
0
1
1
1

EXAMPLE: 00111100 3C16 60iO
01011010+ 5A16 + 90io +
10010110 9616 150,0

IN ORDER TO MAKE LONGER ADDITIONS EASIER TO PROGRAM,THE
MICROPROCESSOR HAS A CARRY BIT (FLAG). AT THE START OF AN
ADDITION THIS IS TREATED AS THE INPUT CARRY, AND AT THE END IT
RECEIVES THE CARRY OUT FROM THE SUM AT BIT 7: ASSUMING WE HAVE A
CARRY INPUT:

11000011
10100101 CARRY IN

C316

A516

- l i e
169,6

195,0
165,0
_Jio+
361,0CARRY OUT QJ 01101001

SUBSTRACTION OPERATES IN A SIMILAR MANNER, EXCEPT THAT THE
CARRY (OR BORROW) FLAG OPERATES UPSIDE DOWN: A 0 CARRY FLAG IS
TREATED AS REPRESENTING A BORROW FROM THE PREVIOUS STAGE:

11111111 FF16 25510

00, 6 000,0

J 010
510ioQ] 11111110 1FE16

NOT QUITE THE RESULTS ONE MIGHT HAVE WISHED FOR! (SUPERFICIALLY)
THIS OCCURS BECAUSE OF THE HARDWARE IMPLEMENTATION OF
SUBTRACTION A SUBTRACTION, (P-Q), IS REGARDED BY THE MICRO-
PROCESSOR AS THE EQUIVALENT (P+(-Q)), BECAUSE THERE IS A SIMPLE
WAY TO GENERATE THE NEGATIVE OF A NUMBER.
THE 'ONES-COMPLEMENT'OF A BINARY NUMBER IS SIMPLY GENERATED BY
EXCHANGING '0's & Ts :

T s 000011002 0Cie 12,o
COMPLEMENT 111100112 F316 24310

IF THIS ONE'S-COMPLEMENT IS TO BE THE NEGATIVE OF A NUMBER,
WE SHOULD GET 0 ON ADDITION:

GLOSSARY
- ACCUMULATOR: 8-BIT CENTRAL REGISTER IN THE MICROPROCESSOR.

MOST INFORMATION HAS TO GO THROUGH IT.
- ADDRESS: 16 BIT POINTER TO A MEMORY LOCATION. THE 6502 MICRO-

PROCESSOR CAN ADDRESS 65, 536 SUCH LOCATIONS (WHICH IS216).
- ARITHMETIC LOGIC UNIT (A.L.U.): A SECTION OF THE MICROPROCESSOR

WHICH CARRIES OUT ARITHMETIC (ADDITION,SUBTRACTION,
INCREMENT, DECREMENT & COMPARE) AND LOGIC ("AND","EOR",
"OR", & BIT SHIFTS) MANIPULATIONS. THIS IS THE ONLY PART OF '
THE MICROPROCESSOR WHICH ALTERS DATA.

- COMMAND: THE MONITOR FUNCTIONS M,G,P,R,L,S,t',l.
- DATA: INFORMATION FOR THE PROCESSOR THAT DOES NOT HAVE TO BE

TRANSLATED, e.g. "AD" AS DATA ACTUALLY MEANS 10x16+13x1 = 1731O

WHEREAS THE INSTRUCTION "AD" GETS TRANSLATED INTO THE
OPERATION "LOAD ACCUMULATOR ABSOLUTE".

- EPROM: ERASABLE PROGRAMMABLE READ ONLY MEMORY. THIS TYPE
OF MEMORY IS LIKE A PROM, BUT CAN AGAIN BE ERASED BY
EXPOSING THE CHIP TO ULTRAVIOLET LIGHT.

- FLAGS: ONE BIT INTERNAL REGISTERS. ALL SEVEN FLAGS CAN ALSO BE
TREATED AS SEPARATE BITS OF THE P REGISTER (PROCESSOR STATUS).

- INDEX REGISTER: A REGISTER WHICH CAN BE USED TO MODIFY AN
ADDRESS (USED IN REFERRING TO DATA) BY BEING ADDED TO IT, THUS
ACCESSING A CERTAIN ELEMENT OF A TABLE. THE 6502 HAS TWO INDEX
REGISTERS CALLED X & Y .

- INSTRUCTION: A FUNCTION OF THE MICROPROCESSOR LIKE LOAD AND
STORE.

- I/O: INPUT/OUTPUT. THIS CHIP ALLOWS YOU TO COMMUNICATE WITH THE
OUTSIDE WORLD. IN THE ACORN THE I/O CHIP HAS 16 PROGRAMMABLE
LINES WHICH CAN EITHER BE OUTPUTS OR INPUTS. IT ALSO HAS 128
BYTES OF RAM.

- IRQ: INTERRUPT REQUEST. IF FLAG I (INTERRUPT DISABLE) IS CLEAR AND
A REQUEST IS MADE THE PROCESSOR WILL ATTEND TO IT AFTER
SETTING FLAG I AND STORING THE PROGRAM COUNTER AND STATUS
REGISTER.

- JUMP: THE PROGRAM COUNTER IS LOADED WITH A NEW ADDRESS. THE
EXECUTION OF THE PROGRAM, WHICH IS NORMALLY USING
CONSECUTIVE ADDRESSES, CONTINUES (JUMPS) AT THIS NEW ADDRESS.

- LOAD: TRANSFERS THE DATA OF A MEMORY LOCATION TO AN INTERNAL
REGISTER.

- MNEMONIC: SUGGESTIVE ABBREVIATION OF AN INSTRUCTION e.g. THE
INSTRUCTION "LOAD ACCUMULATOR ABSOLUTE" HAS THE MNEMONIC
"LDA".

-NMI : NON MASKABLE INTERRUPT WHEN THE NON MASKABLE INTERRUPT
IS ACTIVATED THE PROCESS Wl LL SET FLAG I, STORE AWAY ITS
PROGRAM COUNTER AND STATUS REGISTER AND THEN IMMEDIATELY
ATTEND TO THE INTERRUPT. THERE IS NO WAY OF PREVENTING THIS
INTERRUPT. IT HAS PRIORITY OVER IRQ.

-OPCODE: HEXADECIMAL REPRESENTATION OF AN INSTRUCTION.e.g. THE
INSTRUCTION "LOAD ACCUMULATOR ABSOLUTE" HAS THE MNEMONIC
"LDA" AND THE OPCODE "AD" .

0010

0011
0012
0013
0014-0017
0018

0019
001A

001C001D
001E,001F
001B
FE00
FE0C

FE5E
FE60
FE64
FE66
FE6F
FE7A
FE88
FEA0

FEA6
FEB1
FECD
FED0
FEDD
FEF3
FF04
FFB3

FFEA

D,R4 BASE ADDRESS OF THE EIGHT DISPLAYED MEMORY
LOCATIONS, REGISTER 4: TEMPORARILY PCH AFTER
BREAK.

R5 REGISTER 5: TEMPORARI LY PCL AFTER BREAK
R6 REGISTER 6: TEMPORARI LY 01 AFTER BREAK
R7 REGISTER 7: TEMPORARI LY S AFTER BREAK.

LAST 4 DISPLAYED MEMORY LOCATIONS.
P SINGLE LEVEL OF STORAGE FOR PREVIOUS DATA AT

BREAKPOINTS.
COL COLUMN OF KEY CURRENTLY BEING PROCESSED
TX.TY TEMPORARY STORAGE FOR X (IN DISPLAY) OR Y

(VARIOUS PLACES).
USERNMI ADDRESS OF USER'S NMI PROGRAM
USERIRQ ADDRESS OF USER'S IRQ PROGRAM
RECAL CONTAINS PC RECALCULATION FACTOR FOR BREAK
QUAD DISPLAY X -3 ,X -2 ,X -1 ,X ON THE DISPLAY; THEN I
DISPLAY STROBE KEYBOARD, MULTIPLEX DISPLAY, RETURN

WITH KEY INFORMATION
MHEXTD DISPLAY A MEMORY BYTE ON RIGHT OF DISPLAY
RDHEXTD DISPLAY A ON RIGHT OF DISPLAY
QHEXTD1 DISPLAY X & X+1 ON DISPLAYS 1,2,3 & 4
QHEXTD2 DISPLAY X & X+1 ON DISPLAYS Y - 2 , Y - 1 , Y & Y+1
DHEXTD DISPLAY A ON DISPLAYS Y & Y+1
HEXTD DISPLAY BOTTOM 4 BITS OF A ON DISPLAY Y
QDATFET FETCH AN ADDRESS INTO LOCATIONS X & X+1
COM16 INCREMENT & COMPARE TWO 16 BIT NOS X+6,X+7 &

X+8,X+9
NOINC COMPARE X+6,X+7 & X+8,X+9 FOR EQUALITY
PUTBYTE A TO TAPE, DO 1 START & 1 STOP BITS, NO PARITY
WAIT WAIT FOR CASSETTE TIMING
% WAIT HALT^THE WAIT
GETBYTE TAPE TO A, WAIT FOR START BIT, CENTRE TIMING
RESET ENTRY TO MONITOR
RESTART RE-ENTRY TO RUNNING MONITOR
BREAK ENTRY TO MONITOR FROM BRK INSTRUCTION,

DISPLAY CPU
FONT SEVEN SEGMENT PICTURES OF THE HEX DIGITS
RECAL CONTAINS PC RECALCULATION FACTOR FOR BREAK

000011002 0C
F3

16

16

12
243

10

10

111111112

WHICH DOESN'T HAPPEN
000011002
111100112

1a

UNTIL WE

+

FF16

ADD AN EXTRA 1
0C16

F316

1l6 +
1 000000002

25510

12io
243io

l io
25610

16

AND THEN TREAT THE OUTPUT CARRY AS INDICATING THE ABSENCE OF A
BORROW FROM THE HIGHER ORDERS.
THE NUMBER (ONE'S-COMPLEMENT + 1) IS CALLED THE TWO'S-COMPLEMENT
OF A NUMBER:

BINARY HEXADECIMAL DECIMAL
000000012 01 i6 + 1 1 O

IIIIIIH2
111111102

FF
FE

16

16

+0i 0 or - 0 ! 0

-ho
-2io

111101002
100000002

F416 - 1 2 i 0

8016 -128 1 O

0IIIIIH2 7F1 6 +127 l 0

SO A BYTE CAN BE TREATED AS A 'SIGNED BINARY NUMBER' IN THE RANGE
+127 0 -128, OR AS A BINARY NUMBER IN THE RANGE 0 +255. NOW
THE SUBTRACTION ABOVE SHOULD BE CLEAR : INTERNALLY, THE MICRO-
PROCESSOR ONE'S-COMPLEMENTS ONE OF THE NUMBERS AND THEN
EXECUTES A NORMAL ADDITON WITH CARRY.

1.4 BINARY CODED DECIMAL (BCD) ARITHMETIC
99 1 6 LOOKS VERY LIKE991 0 THEY BEHAVE THE SAME WAY AS THEY ARE
MOVED AROUND AND UNDERGO LOGICAL OPERATIONS SINCE THEY ARE
WRITTEN THE SAME WAY. THE BINARY REPRESENTATION OF 991 0 WOULD
NORMALLY BE 011000112, AND OF 9 9 i 6 IT WOULD BE 10011001^ WE NOW
DEFINE THE BINARY CODED DECIMAL VERSION OF 991 0 AS BEING THE
BINARY REPRESENTATION OF THE DECIMAL DIGITS IN THE ORIGINAL
POSITIONAL NOTATION, MAKING THE DIFFERENCE BETWEEN THE BINARY
REPRESENTATIONS OF 9916 & 991 0 A MATTER OF SUPSCRIPTS:

9916 =100110012

9910 = 10011001 B.C.D.
THE B.C.D. AND BINARY NUMBERS DIFFER IN HANDLING ONLY IN
ARITHMETIC:

?9i6 79io
221 6 + BUT 221 0 +
9B16 10110

THE MICROPROCESSOR CAN BE TOLD' WHICH TYPE OF ARITHMETIC TO
CARRY OUT, BY SETTING (PUTTING A ONE INTO) OR CLEARING (PUTTING A
ZERO INTO) AN INTERNAL BIT, THE 'DECIMAL MODE' FLAG.

CHAPTER 2: WELCOME TO THE MACHINE
2.1 HOW ACORN'S MICROPROCESSOR WORKS
TO CARRY OUT THE ABOVE OPERATIONS THE MICROPROCESSOR HAS AN
INTERNAL ARITHMETIC LOGIC UNIT (A.L.U.) WHOSE OUTPUT IS SENT TO AN
INTERNAL REGISTER OF ONE BYTE LENGTH CALLED THE ACCUMULATOR
'A', THIS REGISTER ALSO ACTS AS ONE OF THE OPERANDS; THE OTHER BEING
DRAWN FROM THE MEMORY EXTERNAL TO THE JUPROCESSOR, WHICH IS CON-
NECTED TO THE /iP BY 8 LINES CALLED THE DATABUS:

MEMORY

DATABUS

DATA CAN BE TRANSFERRED ALONG THE DATABUS IN EITHER DIRECTION,
THIS DIRECTION IS CHOSEN BY THE, /zP AND INDICATED TO THE EXTERNAL
UNITS BY A SINGLE 'R/W' LINE :WHEN HIGH, T , THE JUP IS RECEIVING DATA
FROM THE MEMORY, 'READING'; WHEN LOW, '0', THE JJLP IS SENDING DATA TO
THE MEMORY, 'WRITING'. ALL INFORMATION USED BY THE JUP TRAVELS
ALONG THE DATABUS, INCLUDING THE INSTRUCTIONS. SO THAT THE JJL?
KNOWS WHERE ITS INSTRUCTIONS ARE IT HAS A TWO BYTE (16 l 0 BIT)
REGISTER CALLED THE PROGRAM COUNTER, 'PC, WHICH POINTS AT THE
INSTRUCTIONS BEING EXECUTED. THE MEMORY CAN BE VIEWED AS A BOOK
OF 256 PAGES, THE PARTICULAR PAGE BEING DECIDED BY THE MOST
SIGNIFICANT 8 BITS (BITS 15-8) OF THE 16 BIT ADDRESS, EACH PAGE CON-
TAINING 256 BYTES, THE PARTICULAR BYTE BEING DECIDED BY THE LEAST
SIGNIFICANT8BITS (BITS7-0) OF THE 16 BIT ADDRESS.

16 BIT ADDRESS > MEMORY ONE BYTE OF DATA

IN THE KIT, PAGES FE16 & FF16 ARE OCCUPIED BY A NON-ERASEABLE PROGRAM
TO INTERFACE BETWEEN THE MICROPROCESSOR AND THE KEYBOARD &
DISPLAYUNIT.TOSTARTTHE/iPINTHISPROGRAM (ATTHE CORRECT PLACE)
THERE IS A RESET BUTTON WHICH INITIALIZES THE PROGRAM COUNTER. IN
PAGE0016 THERE IS SOME ALTERABLE MEMORY, OF WHICH THE BOTTOM IF1 6

BYTES ARE GIVEN SPECIAL USES BY THE FE16 & FF16 MONITOR PROGRAM, SO,
UNLESS PRESSED FOR SPACE, IT'S BEST TO STAY OUT OF THEM.

APPENDIX C HEXADECIMAL TO DECIMAL

1st
DIGIT 2nd DIGIT

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0
0
16
32
48
64
80
96
112
128
144
160
176
192
208
224
240

1
1
17
33
49
65
81
97
113
129
145
161
177
193
209
225
241

2
2
18
34
b(A
66
82
98
114
130
146
162
178
194
210
226
242

3
3
19
35
51
67
83
99
115
131
147
163
179
195
211
227
243

4
4
20
36
52
68
84
100
116
132
148
164
180
196
212
228
244

5
5
21
37
53
69
85

' 101
117
133
149
165
181
197
213
229
245

6
6
22
38
b4
70
86
1Cl2
118
134
150
166
182
198
214
230
246

7
7
23
39
55
71
87
103
119
135
151
167
183
199
215
231
247

8
8
24
40
56
72
88
104
120
136
152
168
184
200
216
232
248

9
9
25
41
b/
73
89
105
121
137
153
169
185
201
217
233
249

A
10
26
42
58
74
90
106
122
138
154
170
186
202
218
234
250

B
11
27
43
59
75
91
107
123
139
155
171
187
203
219
235
251

C
12
28
44
60
76
92
108
124
140
156
172
188
204
220
236
252

D
13
29
45
61
77
93

1(Z!9
125
141
157
173
189
205
221
237
253

E
14

3d
46
62
78
94

nd
126
142
158
174
190
206
222
238
254

F
15
31
47
63
79
95
111
127
143
159
175
191
207
223
239
255

HEX
100
200
400
800
1000
2000
4000

8000
10000

DEC
256
512
1024
2048
4096
8192
16384
32768
65536

APPENDIX D ACORN MONITOR ADDRESS INFORMATION
COMMENT
LOW AND HIGH BYTES OF THE M ADDRESS
LOW AND HIGH BYTES OF THE GO ADDRESS
LOW AND HIGH BYTES OF THE BREAKPOINT ADDRESS
LOW AND HIGH BYTES OF THE TAPE FROM ADDRESS
LOW AND HIGH BYTES OF THE TAPE TO ADDRESS
REGISTER 0: CONTAINS A AFTER BREAK.
REGISTER 1: CONTAINS X AFTER BREAK.
REGISTER 2: CONTAINS Y AFTER BREAK.
REGISTER 3: TEMPORARI LY P AFTER BREAK,
CONTAINS LAST PRESSED KEY FOR DISPLAY
MSB=1 SETS REPEATEDLY SCANNED DISPLAY,
OTHERWISE SINGLE SCAN.
EXECUTION STATUS OF THE KEY PROCESSING
ROUTINE

ADDRESS
0000,0001
0002,0003
0004,0005
0006,0007
0008,0009
000A
000B
000C
000D

LABEL
MAP
GAP
PAP
FAP
TAP
R0
R1
R2
R3, KEY

000E

000F

REPEAT

EXEC

ocx.
O<

2
O<

Q.

O
-JDC
com
<N

co

LJJ

ON O N

D C *
O3

Si-

DC
DQ

Qu

LU
DCN

Qoc
Zuu
<N

I -
LZLU
CON

Or;

o*
DC<

< <

< <

OK
DCW

z
<N

DC DC
COLLJ
JN

eg
OLU
LUN

DC

°5
LJJ <

HI <

u

Ox

LUN

DC>-

Oco
Q CD

CJ
LU

QC

9= Q

< ^

O LLJ
LL N

Q LJJ

<N

8K
< —

DC

O
oc<

8
<<

8
<N

O
XDC
I— UJLorn

O
<DC

CON

CON

corw

com

l
corw

xg
QLU
-IN

<DC
QLU
-IN

DC
Q LU
-IN

Q

U

O
UDC
LU LU
Qfkl

2
uru

Q_ LJJ

UN

U 3

U

Q

HI ^\

U <

LLJ ^ \

Qrvi"

I*

U

X

•y LU
£N

o
CQLU
CON

X
Q_ HI
ON

00 -
CO-3

CO <

co<

CQ
CON

CO-3

LU

O

<

2.2 THE MONITOR COMMANDS M r t , l
THE FIRST FEATURE OF THE MONITOR IS THE MEMORY INSPECT & MODIFY
CONTROL SWITCH ON, AND PRESS THE RESET BUTTON:

MODE DATAADDRESS

THEN PRESS THE MODIFY KEY, M. THIS GETS YOU INTO THE MEMORY
INSPECTION AND MODIFY MODE. THE MODE INDICATOR SHOWS'A' FOR
ALTER. THIS Fl RST PHASE OF 'A' ALLOWS YOU TO CHOOSE ANY ADDRESS
IN MEMORY.

A. X X X X
APPEARS ON THE DISPLAY, WHERE X REPRESENTS

ANY OF THE 16 HEX CARACTERS SIGNIFYING THE ADDRESS.NOW PRESS THE
KEYS F, E, 0, 0 (IF YOU MAKE A MISTAKE, E.G. PRESSED F, D, JUST START
OFF FROM THE F AGAIN). AS EACH KEY IS PRESSED THE INFORMATION
ON THE DISPLAY SHIFTS TO THE LEFT:

A.
A.
A.
A.

X X X F
XX F E
XF E0
FE00

AND SO YOU END UP WITH FE00ONTHE DISPLAY. PRESS ANY OF THE EIGHT
COMMAND KEYS (IT DOES NOT MATTER WHICH) AND YOU CAN INSPECT THE
CONTENTS OF THIS MEMORY ADDRESS. THIS IS PHASE TWO OF MODE 'A' AND
ALLOWS YOU TO INSPECT AND ALTER THE DATA OF THE MEMORY ADDRESS
CHOSEN IN PHASE ONE.

A. F E 0 0 A0

THIS ISTHE INFORMATION STORED AT THE VERY BEGINNING OF THE
MONITOR. IF YOU PRESS THE t KEY

A. F E 0 1 . 0 6

UP WE GO. NATURALLY THE4, KEY BRINGS BACK

A. F E 0 0 . A0

AND EITHER KEY MAY BE USED ANY NUMBER OF TIMES IN SUCCESSION. NOW,
IF, WITHOUT TURNING OFF, YOU PRESS RESET

AND THENM

A. F E 0 0

THE SYSTEM HAS REMEMBERED THE ADDRESS YOU WERE USING (WHICH
DOESN'T HAVE TO BE FE00) TO INSPECT MEMORY NOW ENTER THE ADDRESS
0030 AND TERMINATE WITH ANY COMMAND KEY

A. 0 0 3 0 X X

0030 IS AN ADDRESS IN THE ALTERABLE SECTION OF THE MEMORY.
PRESSING DIGIT KEYS NOW WILL CAUSE THE INFORMATION IN0030TO
CHANGE (WHAT HAPPENS AT FE00?? TRY IT! YOU CANNOT WRITE INTO THE
MONITOR PROM, (i.e. THE PROGRAMMABLE READ ONLY MEMORY). PRESS 0, 1.

PRESS 2.3

A.

A.

0030

0030

01

23

AS BEFORE INFORMATION ISSHIFTED IN UNTIL TERMINATED BY ANY
COMMAND KEY. BUT, UNLI KE THE ADDRESS FETCHING PHASE, THE COMMAND
KEY Wl LL BE EXECUTED. USEFUL TERMINATORS ARE THE M, t & I KEYS.
PRESS t .

A. 0 0 3 1 X X

PR ESS 4,5

A. 0 0 3 1 45

PRESS 4-

A. 0 0 3 0 23

& t AGAIN

0 0 3 1 45

YOU CAN GO UP AND DOWN INSPECTING & MODIFYING THE MEMORY
CONTENTS IF THERE IS NO ALTERABLE MEMORY (E.G. A PROM) AT A
PARTICULAR ADDRESS, THE INFORMATION WILL NOT CHANGE. TO CLOSE
THIS SECTION WE'LL MAKE THE MONITOR DO A LITTLE TRICK. M,0,0,0,E, k
(k = ANY COMMAND KEY)

cc

o

fl
U

L
A

oO

T
H

A
N

cc
UJ
I

CO

cc
UJ

5
UJ
cc

o
DC

Q
Z

>

<

x̂
<

LU

D
_ J

O
COCO

*^

N

X.
N

O
DC
UJ
N

Q
UJ

I/Ml
CJ

ES
S

 IN

DC UJ

Q Q
Q O

F
LA

G
S

<
DO
DC
LU

>
CJ

OIA
I3N

I

2.

CO
LU m

j _ , _

CO K

CO ID

CO • * •

CO ^t

co «?r

CN <tf

CN <3"

CN CO

CN CN

z
t

t

t

<
<

1

1

1

CJ
CN

1

1

CN

1

MJ
Z

CO

)W
!T

H
E

S
T

B
IT

I—I LLJ

Z H
<Q
—1 ^ .

__ iZ
O co
O<

t

CO

1
X

1

1

1

u
UJ

1

1

LU

UJ

CJ
ru
z

X
UJ
DC
<
CL

O
u

X
Q .
CJ

1
>

1

1

1

0
CJ

1

1

CJ

§

CJ
MJ
z

LU
DC
<
Q .

O
CJ

Q_

CJ

I

t

\
(j
0 -

t

0
CD

1

1

<^

1

1

1

1

1

a.

Q_

—3

X
t

1

UJ
CO

1

UJ

CO
CO

1

<

<

MJ

t

1

1

CJ
CO

CJ
<

1

a

t

NJ
Z

S
TE

R
S

TE
R

R
E

G
I

X
Q

- I

X
Q
_ l

R
E

G
I

Q

_J

Q
_ j

t
X

1

1

1

LU
00

CO

1

CO
00

1

IS
TE

R

t
>

1

1

1

CJ
00

1

O)

00

1

IS
TE

R

LU LLJ
DC DC

X
LU
cc
O

CO

X

CO

>-
LU
DC
O
CO

>

CO

CO \-

UJ

E
1

>
LL5

1
O

UJ
OC

x
<

CO
CO

<

Z
E

R
O

IN
G

CO
CO
UJ
DC LU

Q Q
Q O
< 2

CO

0

F
LA

_J

CO
DC
UJ

>

CJ

IO
N

3NI/M

CO

CO

CN

CN

CO

CO

LO

1-
LL

I

T
IC

S

LU

R
IT

H

<

A
S

L

UJ

UJ
0

CO

s

CJ

z

E
F

T

—i

LU
Q

UJ
CJ

CD
Q

8

MJ
Z

LU

D
EC

R

1—1

IN
A

R

CO

D
E

C

UJ
LL

LU
LJJ

CD
LL

CO
UJ

MJ
Z

E
N

T
 1

111

N
C

R
E

DC

z
CO

IN
C

UJ
in

UJ

s

CJ
MJ
Z

h-

S
H

IF

<r

O
G

IC
LS

R
IG

H
T

cc

UJ
CO

LU
CN

8

CD
CN

CJ
MJ
Z

LE
F

T

UJ

O
T

A
T

DC

R
O

L

LU

HI
CO

CD

§

CJ
MJ
Z

1-

R
IG

H

LU

O
T

A
T

DC

DC

O
DC

CJ

z
CO

E
C

R
O

S
PA

G
E

.V
E

S

O

IO
N

 1

<r

D
PE

R
,

LL

C
LE

 1

CJ

DC

X
UJ

UJ
0

a.

%
0
ccCJ

N
C

H
&

B
R

A

LL

CN

I
CJ

B
R

A
h

LL

+
I

uz
DC
DO

O

LL

LLI

DC

O
CO

I

DC

lilt
I8l| DC q

LU - I
Q_ _ l

O <
I I

8
LU

DC

Q

Q

<

DC

O

D
CJ

3

LU
QC
Q
Q
<
DC
O

D

U
O
<

CO
CO
LU
DC
Q
Q

DC
O

D
^
D
CJ
CJ

O

i
EX

I
> DC

0- Z
O LLJ

I

o
DC
c
o

00

t

JUI

u u o o
Q_ Q_ Q_ Q. Q-

r-i n t t t t t
- L , I . CO CO CO CO CO

1 1 I
+ + I

Illll
SSSSQ

CO CO CO CO CO

t t t t t x , x < w <

+ + + + + t t t t t t
cococococo<<coXX>-

CN(N(NCN<NCNCNJCNCN CM CM CM CM CN CN

Qi OO C D ^ O O O O C D ^

D Q U O I U U ^
< CO < < < 00
< < CD 00 O) O)

DO

u
N ru ru rvi ru

C J O - > Z Z Z Z Z
MJ - I

z <
u
ru

u
ru ru ru ru rtJ ru ru

z z z z z z

CO

LU CO

8

CO CO

LLJ
DC
CO

I

CO

DCDCDCOCcCDCDCCCCJ

LJJLULULuSSSSo
_ J _ I _ J _ I ± ± ± ± O
CJCJCJCJCOGOCOCO-I

f-
co
DC

o
LU
(J
O
DC

H
co
DC

oCO
CO
LU
CJ
o

t
D
DC
DC
LU

< 2z
o

DC

- co co -J - i

Z O_ Q_ O_ O_

LL
LU

O
DC

I
o
DC

LU

5
DC

o
DC

DC
D

I-
O
DC
CO
D
CO

O
DC
LL

z
DC
D
LU
DC

> X < W <

o o o o o
h l h h< < co X X >

DC DC DC DC DC DC
LU LJJ LU LU LU
LL LL LL LL LL
CO CO CO CO COz z z z z
< < <
DC DC DC DC DC
hhhhh

U Q _ > X >
J l J J L U L U

<
LT

CO U U U U Q Q ± - - l ZQ.Q.Q.Q.

-J DC _
O O I-
DC DC DC

CO
H
DC

PRESS 1,6. (IF YOU GET BORED, YOU CAN GO THE OTHER WAY BY 1,7)
(ESCAPE BY RESET). THE MONITOR SCANS THROUGH ALL MEMORY
SUCCESSIVELY SHOWING ITS CONTENTS (DATA). WHERE THERE IS NO
MEMORY AT ALL YOU WILL PROBABLY SEE THE FIRST TWO ADDRESS
DIGITS.

2.3 AT LAST, A PROGRAM
2.3.1 ASSEMBLY LANGUAGE, MACHINE LANGUAGE, THE INSTRUCTIONS

LOAD, STORE AND JUMP
A PROGRAM IS THE NAME FOR A SET OF STORED COMMANDS THAT THE
MICROPROCESSOR WILL EXECUTE. THESE ARE STORED IN BINARY, SINCE
THAT'S ALL THAT ANYTHING CAN BE STORED IN, (ENTERED BY YOU IN HEX)
AND ARE INDISTINGUISHABLE FROM ANYTHING ELSE. IF IT GETS THE
CHANCETHE/xP (MICROPROCESSOR) WILL BUSY ITSELF TREATING
INFORMATION WHICH YOU MEANT AS DATA AS A PROGRAM. IT PROBABLY
WONT BE DOING ANYTHING INTELLIGENT AND Wl LL HAVE TO BE
SUMMONED BACK WITH THE RESET KEY. SOME SORT OF TRANSLATION
BETWEEN THE STORED BINARY/HEX AND YOU IS NEEDED. 101011012 MEANS
A GREAT DEAL TO THE/xP BUT LITTLE TO YOU. IT ACTUALLY MEANS "LOAD
THE ACCUMULATOR WITH THE CONTENTS OF THE MEMORY ADDRESS
DEFINED BY THE FOLLOWING TWO BYTES, OF WHICH THE FIRST IS THE
LEAST SIGNIFICANT ADDRESS". THIS ISA LITTLE LONG FOR WRITING
STRAIGHT INTO A PROGRAM AND IS USUALLY ABBREVIATED TO LDAABS,
OR JUST LDA.ABSOLUTE MEANS ANYWHERE IN THE 64K. THE 6502 CAN
ADDRESS 64K OF MEMORY WHICH IS DIVIDED INTO PAGES 256 BYTES LONG
THE FIRST PAGE IS CALLED ZERO PAGE. LOCATIONS IN ZERO PAGE CAN
BE ADDRESSED BY JUST ONE BYTE. THERE ARE SPECIAL INSTRUCTIONS TO
DO THIS. AT THE END OF THE MANUAL THERE ISA LIST OF ALL THESE
MNEMONICS WITH THEIR HEX EQUIVALENTS IN APPENDIX B. SO IF WE WROTE
THE PROGRAM IN MNEMOMICS ITW0ULD LOOK LIKE.

LDAFE00
AND WE WOULD TRANSLATE IT FOR THE JUP AS THE THREE BYTES

AD LOAD ABSOLUTE
00 LOWER BYTE OF ADDRESS
FE HIGH BYTE OF ADDRESS

WHICH WOULD CAUSE THE JUP TO PUT A0 (THE DATASTORED IN FE00) IN ITS
ACCUMULATOR (REMEMBER USING THE MONITOR TO LOOK AT FE00?). THE
TRANSLATION PROCESS IS CALLED ASSEMBLING AND COMPUTER PROGRAMS
WHICH DO IT ARE CALLED ASSEMBLERS. A RESIDENT ASSEMBLER IS ONE
THAT RUNS (OPERATES) ON THE SAME MACHINE THAT IT ASSEMBLES FOR;
A CROSS ASSEMBLER RUNS ON A DIFFERENT MACHINE. THE MNEMONICS
LDA, STA etc ARE OFTEN CALLED ASSEMBLY LANGUAGE, THE GENERATED
BINARY IS CALLED MACHINE CODE.
WE CAN LOAD THE ACCUMULATOR IN TEN OTHER WAYS; HERE ARE TWO OF
THEM.

INSTRUCTION
LENGTH
IN
BYTES TYPE

2 1
HEX
A9

MNEMONIC
LDA#

EXECUTION
TIMERS

2
BRIEF EXPLANATION
PUT THE NEXT BYTE
ACCUMULATOR. "LOAD
IMMEDIATE'.

2 2 A5 LDA Z 3 SHORTENED FORM OF
LOAD ABS 00XX 'LOAD
ZERO PAGE'.

3 3 AD LDA 4 LOAD A ABSOLUTE.
THE FIRST OF THESE INSTRUCTIONS IS VERY IMPORTANT. IF WE KNOW THAT
WE WANT A0 IN THE ACCUMULATOR THEN IT IS WASTEFUL TO FIND A
MEMORY LOCATION WHICH HAPPENS TO CONTAIN IT, SINCE TWO BYTES ARE
NEEDED (GENERALLY) TO SPECIFY WHERE IT IS AND SO WE IMPLY, BY THE
IMMEDIATE INSTRUCTION, WHEHE IT IS & ACTUALLY ENTER IT IN THE
PROGRAM. THERE ARE COMPLEMENTARY STORE ACCUMULATOR 'STA'
INSTRUCTIONS TO LDA 2-AND LDA.
BYTES

2
TYPE

2
HEX
85

MNEMONIC
STAZ

TIMERS
2 STORE A ZERO PAGE

(IN THE FIRST 256 BYTES)
3 3 8D STA 3 STORE A ABSOLUTE

(ANYWHERE IN MEMORY)
WE CAN ALSO LOAD THE PROGRAM COUNTER. THE PROGRAM COUNTER IS AN
INTERNAL REGISTER THAT POINTS TO THE NEXT LINE OF THE PROGRAM.
THE MNEMONIC FOR THIS IS NOT LDPC BECAUSE WHEN THE P.C. IS LOADED
WITH A NEW VALUE IT GIVES THE MICROPROCESSOR A Dl FFERENT PLACE TO
LOOK FOR INSTRUCTIONS: THE PROGRAM JUMPS. SO 'LOAD P.C. WITH NEXT
TWO BYTES' (LDPC) IS JMP, THIS IS REFERRED TO AS JUMP ABSOLUTE
SINCE THE PROGRAM JUMPS TO A NEW ABSOLUTE ADDRESS. SO IF WE ARE
NOT IN THE MONITOR ANDWANTTO BE,JMP FF04WILL ENTER THE MONITOR.
NOW WHAT HAPPENS IF THE FOLLOWING PROGRAM IS RUN?

LDA FE00
STA Z 20
JMP FF04

THE FIRST INSTRUCTION GETS THE CONTENTS OF FE00, AND PUTS IT IN THE
ACCUMULATOR. THE SECOND STORES THE ACCUMULATOR IN LOCATION
0020JHE FIRST TWO 0'S REFER TO ZERO PAGE AND ARE ASSUMED BY THE
PROCESSOR IN THE ZERO PAGE MODE. THE THIRD GETS BACK TO THE
MONITOR, SO THAT YOU CAN INSPECT LOCATION 20. THIS READS AS.
0030
0031
0032
0033
0034
0035
0036
0037

AD (OPCODE)
00 (DATA)
FE (DATA)
85 (OPCODE)
20 (DATA)
4C (OPCODE)
04 (DATA)
FF (DATA)

LDA

STA

,! JMP

FE00

Z20

FF04

II RELATIVE: RELATIVE ADDRESSING MODE

2 BYTES 2+t CYCLES

MNEMONIC

BCC
BCS
BEQ
BMI
BNE
BPL
BVC
BVS

VERBAL

BRANCH IF CARRY CLEAR
BRANCH IF CARRY SET
BRANCH IF EQUAL (TO ZERO)
BRANCH IF MINUS
BRANCH IF NOT EQUAL
BRANCH IF PLUS
BRANCH IF OVERFLOW CLEAR
BRANCH IF OVERFLOW SET

90
B0
F0
30
D0
10
50
70

BRANCH IFC = 0
C=1
Z = 1
N = 1
2 = 0
N =0
V = 0
V = 1

S
E

T

A
C

C
U

M
U

L
A

T
O

R
,

O
P

E
R

A
T

IO
N

,
M

E
M

O
R

Y
 -
•

A
C

C
U

M
U

L
A

T
O

R

A
P

P
E

N
D

IX
 B

 IN
S

TR
U

C
TI

O
N

1
A

C
C

U
M

U
L

A
T

O
R

 R
E

F
E

R
E

N
C

E
: ,

A
D

D
R

E
S

S
IN

G
M

O
D

E

IM
M

E
D

Z

E
R

O

Z
,X

A

B
S

O
L

U
T

E

A
,X

A

,Y

(I
,X

)
(|

),
Y

V
E

R
B

A
L

M
N

E
M

O
N

IC

B
Y

T
E

S
C

Y
C

L
E

S
 =

S
P

E
E

D
 JU

S

2
2

2
3

3
3

2
2

2
3

4

4

4

+
4

+
6

5
+

F
L

A
G

S
 I

N
 P

A
F

F
E

C
T

E
D

< <
t t

• + t t t +
2 2 2 2 <2 2
+ t 1 > t > 1
< < < < 2 < <

r> co Q incDr- LL

69

6
5

 7
5

6
D

7
D

7
9

6

1
29

2
5

3
5

2
D

3
D

39

2
1

C
9

C
5

D

5

C
D

D

D

D
9

C

1

49

4
5

5
5

4

D

5
D

5
9

4

1
A

9
A

5

B
5

A

D

B
D

B

9

A
09

0
5

1

5

0
D

1
D

1
9

0
1

E9

E
5

 F
5

E

D

F
D

F

9

E
1

O cj cj
N IU ru rw IU rw m
z z z z z z z

A
D

D
 W

IT
H

 C
A

R
R

Y
L

O
G

IC
A

L
 A

N
D

L
O

G
IC

A
L

C
O

M
P

A
R

E
L

O
G

IC
A

L
E

X
C

L
U

S
IV

E
O

R
L

O
A

D
 A

C
C

U
M

U
L

A
T

O
R

L
O

G
IC

A
L

O
R

S
U

B
T

R
A

C
T

 W
IT

H
B

O
R

R
O

W
/C

A
R

R
Y

UQlDC < < o
Q Z 2 O QO=m
< < UUJ -i O c/)

2
t
<

-
8
5

9
5

8
D

9
D

9
9

8

1

9
1

S
T

O
R

E
 A

C
C

U
M

U
L

A
T

O
R

S
T

A

THE ADDRESS 0030 IS THE STARTING ADDRESS OF THE PROGRAM. THIS
PARTICULAR PROGRAM WILL WORK WITH ANY STARTING ADDRESS - IT IS
SAID TO BE 'POSITION INDEPENDENT' OR 'RELOCATABLE' - BUT OTHER
PROGRAMS MAY NOT. IF YOU ARE NEW TO THE GAME, IT WILL BE EASIER IF
YOU ENTER PROGRAMS AT THE STARTING ADDRESS SHOWN IN THE MANUAL.

2.3.2 ENTERING A PROGRAM, THE GO COMMAND
TO ENTER THIS PROGRAM, WE'LL GO THROUGH IT STEP BY STEP.
I ENTER THE STARTING ADDRESS: PRESS M,0.0,3,0, k
II ENTER A BYTE OF DATA A,D
I11 USE THE t KEY TO TERMI NATE DATA ENTRY AND STEP UP

- CONTINUE WITH 0/0^F/E/t,8/5,t,2,0,t,4,C,t,0,4,t,F,F
IV CHECK THAT THE PROGRAM IS ENTERED CORRECTLY BY, E.G, USING I

TO GO BACK DOWN THROUGH IT.
- REMEMBER THAT MISTAKES AT KEY ENTRY (E.G. PRESSED 8,6) MAY BE
CORRECTED BY CONTINUING (PRESS 8,5) -

NOW THAT THE PROGRAM IS LOADED PRESS ONLY ONCE THE 'GO' (G) KEY

K. XXXX

APPEARS THE K (R.) REMINDS YOU OF TWO THINGS: X THIS IS A DIFFERENT
STORED ADDRESS TO THE A. ADDRESS.1L YOU CANT GO BACK! (UNLESS
YOU EITHER PRESS RESET OR ENTER ADDRESS FF04.THE MONITOR ENTRY
ADDRESS, AND GO) THE NEXT COMMAND KEY YOU PRESS Wl LL CAUSE THE
/zPTO DO A KAMI-KAZE DIVE TO THE ADDRESS SHOWN, SO ITS AS WELL TO
GET IT RIGHT!! ENTER 0,0,3,0

K. 0 0 3 0

AND PRESS ANY COMMAND KEY. NOTHING HAPPENED? WELL IT DID, REALLY.
IT JUST HAPPENED VERY QUICKLY:

PROGRAM EXECUTION TIMES,juS
LDA FE00 4
STA Z 20 3
JMP FF04 3

TOTAL 101OMS
ITTOOKTENMILLIONTHSOF A SECOND TO HAPPEN. WE'RE NOW BACK IN
THE MONITOR. PRESSING ANY DIGIT KEY WILL CAUSE THE (BY NOW)
FAMILIAR DOTS TO REAPPEAR. PRESS M,0,0,2,0 k :

A. 0 0 2 0 A0

WHICH CHECKS THAT THE PROGRAM ACTUALLY DID WORK. YOU COULD
CHANGE 0020 AND RUN THE PROGRAM AGAIN BY THE KEYS

F, F, G,G,M, M
WHICH SUCCESSIVELY PUT FF IN 0020, RUN THE PROGRAM AND RE-EXAMINE

LOCATION 0020. A LOT QUICKER FOR YOU THE SECOND TIME, WASN'T IT?
THIS ISBECAUSEM&G REMEMBER WHAT THEY WERE POINTING AT. LET'S
MAKE THE PROGRAM BETTER. AT THE MOMENT WE HAVE NO IDEA IF IT RAN,
AND WE DON'T KNOW IF IT RAN CORRECTLY UNTIL WE LOOK AT 0020. IF THE
PROGRAM WROTE OUT THE BYTE ON THE DISPLAY AS WELL AS STORING IT
IN 0020, WE'D KNOW THAT IT HAD ALL HAPPENED. INSIDE THE ACORN
MONITOR PROGRAM IS A SET OF INSTRUCTIONS TO WRITE A BYTE ONTO THE
TWO RIGHT HAND DISPLAY DIGITS. THIS PROGRAM IS LOCATED AT FE60 AND
EXPECTS THE BYTE TO BE DISPLAYED TO BE IN THE ACCUMULATOR, WHICH
IT IS. THE PROGRAM DESTROYS THIS BYTE AS IT PUTS IT ONTO THE DISPLAY
SO WE MUST PUT IT IN 0020 BEFORE USING THE PROGRAM.
2.3.3 INSTRUCTIONS JMP, JSR
IF WE SIMPLY WENT JMP FE60 THIS WOULD CORRECTLY EXECUTE THE
PROGRAM BUT WE WOULD BE LEFT IN THE MIDDLE OF THE MONITOR SOME-
WHERE SINCE THE PROGRAM DOES NOT HAVE AN ADDRESS TO JUMP BACK
TO. WE CAN GIVE IT SUCH AN ADDRESS WITH THE INSTRUCTION JSR (OPCODE
20 HEX) THIS IS EXACTLY LI KE A JUMP BUT IT SAVES THE PROGRAM
COUNTER BEFORE JUMPING. THEN THE SINGLE BYTE INSTRUCTION RTS
(OPCODE 60 HEX) RESTORES THE PROGRAM COUNTER AND WE GET BACK
AGAIN. JSR IS "JUMP TO SUBROUTINE" AND RTS IS "RETURN FROM
SUBROUTINE". THE PROGRAM AT FE60 HAS AN RTS ATTACHED AT ITS END,
ANDSOCANTRANSFERCONTROLBACKTOTHE PROGRAM WHICH CALLED IT.
OUR NEW PROGRAM IS 3 BYTES LONGER:

APPENDIX A
64 CHARACTER ASCII ON ACORN'S 7 SEGMENT DISPLAY

0030
0031

0033
0034
0035
0036
0037

'0038
0039
003A

AD
00
FE
85
20

"20"
60
FE

'4C
04
FF

LDA FE00

STA Z 20

JSR FE60

JMP FF04

AND WE Wl LL HAVE TO ENTER 6 BYTES FROM 0035 TO 003A WITH
M,0,0,3,5, k , 2,0, t,6J3/T,F,E,t,4,C,t,0,4,t,F,F. WE HAVEN'T CHANGED THE START
OFTHE PROGRAM SO G, G WILL RUN IT.

ASCII CODE
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

DISPLAY

a
nb
d
E
F
G
h

i

Zi
R

n
B
p
q
r~

5.
b=
i i.

L_l

u
95.
C
H
Zl
n

CHARACTER
@
A
B
C
D
E
F
G
H
1
J
K
L
M
N
0
P
Q
R
S
T
U
V
w
X
Y
z
[
\
]
A

HEX
5F
77
7C
58
5E
79
71
3D
34
05
0D
75
38
37
54
5C
73
67
50
ED
78
9C
1C
7E
49
6E
BD
39
64
0F
23
08

ASCII CODE
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

DISPLAY

I.
I I

•c
1—

E

C.
Zl.
H

i
—

•
1

E
3
H
5
6
"I
B
g

\
i.

H

P.

CHARACTER

1

#
£
%
&

(
)
*
+

-

1
0
1
2
3
4
5
6
7
8
9

<
=
)
?

HE
00
86
22
63
3B
2D
7B
ffi
B9
8F
76
42
04
40
80
52
3F
06
5B
4F
66
6D
7D
07
7F
6F
82
84
46
48
70
D3

K. 0 0 3 0 A0

APPEARS MEAN ING THAT 0020 HAS AGAIN HAD A0 WRITTEN INTO IT.
INSTEAD OF STORING THINGS IN 0020, LET'S USE ITS INFORMATION AS PART
OF A LOGICAL OPERATION.

PROGRAM. THE STRATEGY OF THE PROGRAM IS NOT OBVIOUS, AND IS LEFT
AS AN EXERCISE TO THE READER. A SMALL PRIZE Wl LL REWARD THE
SUBMISSION OF A SHORTER, FASTER PROGRAM; NOTE THAT WORKSPACE
REQUIREMENTS CONTRIBUTE TO THE LENGTH!

8 QUEENS PROGRAM

0200
0201
0203
0205
0207
0209
020B
020E
0210
0213
0216
0218
021A
021C
021E
0220
0222
0223
0225
0227
0228
022A
022C
022E
022F
0230
0232
0233
0235
0237
0238
023A
023B
023D
023E
0240
0241
0243
0244
0247
0248
024A
024C
024E
0250
0253

F8
A2
84
84
84
84
20
A5
20
4C
B5
C9
D0
A5
69
85
60
15
15
A8
49
F0
95
C8
98
35
A8
15
95
98
15
0A
95
98
15
4A
95
E8
20
CA
B5
49
35
49
4C

20
1F
20
29
32
16
1F
60
04
00
FF
07
1F
00
1F

09
12

FF
F6
18

1B

00
01

09

0A

12

13

16

01
FF
1B
FF
27

MAIN

02

FE
FF

TRY

FINISH

LOOP

02

02

SED
LDX #20
STY COUNT
STY ROW
STY LEFT
STY RIGHT
JSR TRY
LDA COUNT
JSR RDHEXTD
JMP RESTART
LDAZX 00
CMP#FF
BNE CONTINUE
LDA COUNT
ADC #00
STA COUNT
RTS
ORAZX09
ORAZX 12
TAY
EOR#FF
BEQ FINISH
STA2X 1B
INY
TAY
ANDZX 1B
TV\Y
CRAZX 00
STAHX 01
TYA
ORAZX 09
ASLA
STAZX 0A
TYA
ORAZX 12
LSRA
STAZX 13
INX
JSR TRY
DEX
LDAZX 01
EOR #FF
ANDZX 1B
EOR#FF
JMP LOOP

- CLEAR COUNT
- CLEAR ROW OCCUPIED
- CLEAR LEFT DIAGONAL ATTACKS
- CLEAR RIGHT DIAGONAL ATTACKS
- FIND THE NO OF WAYS

- DISPLAY ANSWER

- FINISHED YET?

- FINISHED, SO INCREMENT COUNT

- CURRENT LEFT
- CURRENT RIGHT

- NO CHANCE
- CURRENT POSSIBLE PLACE

- NEW ROW

- NEW LEFT ATTACK

- NEW RIGHT ATTACK

2.3.4 THE LOGIC INSTRUCTIONS 'ORA', 'AND', 'EOR'.
IF WE PUT 601 6 IN LOCATION 0020 (M,0,0,2,0, k, ,6,0 : YOU SHOULD KNOW BY
NOW) AND ALTER THE STA Z INSTRUCTION AT 0033 TO, SAY, ORA Z (OPCODE
05 HEX) (THE PROGRAM READS LDA FE00

ORA Z20
JSR FE60
JMP FFQ(4)

WE HAVE A PROGRAM THAT DISPLAYS THE LOGICAL yOR' BETWEEN THE
CONTENTS OF FE00 (A0) AND 0020, (60). THE HEX FOR ORA Z IS 05 AND IT
CARRIES OUT A LOGICAL 'OR' BETWEEN THE ACCUMULATOR AND THE
SPECIFIED LOCATION IN Z PAGE. M,0,0,3,3, k 0,5 IS THE MODI FICATION
TO THE PROGRAM, THEN SINCE WE STILL START AT 0030, G,G RUNS IT :

K. 0 0 3 0 E0

THE OPERATION WAS 'OR' A0
60
E0

or

10100000
01100000 or
11100000

TRY CHANGING 0020 TO 40 AND RUNNING THE PROGRAM AGAIN IS THE
ANSWER WHAT YOU EXPECTED?
WE CAN CHANGE 0033 TO MAKE THE PROGRAM DO LOGICAL 'AND' OR
'EXCLUSIVE - OR'. THE MNEMONICS AND OPCODES ARE:

LOGICAL AND ACCUMULATOR AND Z PAGE
MEMORY
LOGICAL EXCLUSIVE-OR ACCUMULATOR AND
ZPAGE MEMORY

AND THE PROGRAMS WOULD READ

AND

EOR

Z

Z

251 6

451 6

LDA FE00
AND Z 20
JSR FE60
JMP FF04

LDA FE00
EOR Z20
JSR FE60
JMP FF04

BY NOW YOU MUST BE GETTING TIRED OF THE A0 IN FE00 SO WE'LL CHANGE
THE PROGRAM TO READ

LDA Z21
EOR Z20
JSR FE60
JMP FF04

THE SPACE TAKEN UP BY LDA Z 21 IS ONE BYTE LESS THAN THAT USED BY
LDA FE00. WE COULD SIMPLY WRITE THE NEW TWO BYTES IN AT LOCATIONS
0031 & 0032 AND CHANGE THE GO ADDRESS TO 0031. THIS IS VERY SIMPLE
HERE SINCE THAT IS ALL WE HAVE TO DO. BUT IF THERE WERE MANY
REFERENCES TO 0030 AS THE START OF THIS PROGRAM IT WOULD TAKE A
LONG TIME TO FIND AND CHANGE THEM ALL, AND IF WE DIDN'T CHANGE
THEM ALL SOMETHING WOULD GO WRONG. WE CAN'T MOVE THE REST OF
THE PROGRAM DOWN ONE BYTE: SOMETHING MIGHT BE REFERRING TO IT.
THE PROBLEM ARISES BECAUSE LDA Z IS SHORTER THAN LDA. WE COULD
SIMPLY USE LDA WITH A ZERO PAGE ADDRESS BUT THIS TAKES A WHOLE /iS

LONGER THAN LDA H! THE SOLUTION IS TO USE LDA Z AND TO INCORPORATE
AN EXTRA BYTE IN 0030 AS PADDING. THIS MUST BE A SINGLE-BYTE
INSTRUCTION, THAT DOES NOTHING TO AFFECT THE PROGRAM, AND ONE IS
SPECIFICALLY PROVIDED

NOP EA
THE PROGRAM READS
0030 EA
0031 A5 21

'NO OPERATION"

0033 45

0038 4C04FF

NOP
LDA 2 21
EOR Z20
JSR FE60
JMP FF04

-NOTICE THE MORE COMPACT MODE OF WRITING IT DOWN. THIS IS MORE
CONSISTENT WITH THE WAY MNEMONICS ARE WRITTEN. IT IS EXACTLY
EQUIVALENT TO
0030 EA NOP
0031 A5 LDA Z 21
0032 21
0033 45 EOR 220
0034 20
0035 20 JSR FE60
0036 60
0037 FE
0038 4C JMP FF04
0039 04
003A FF
AND IT WILL BE USED THROUGHOUT THE REST OF THE MANUAL:
THIS PROGRAM TAKES THE CONTENTS OF (WHICH MAY BE WRITTEN BY
PUTTING BRACKETS AROUND THE PARTICULAR ADDRESS) 0020 & 0021 AND
PRESENTS THEIR LOGICAL EXCLUSIVE - OR ON THE DISPLAY. APART FROM
THEIR LOGICAL FUNCTIONS, THESE OPERATORS ARE OFTEN USED TO
MANIPULATE SINGLE BITS. FOR INSTANCE ORA #01 WOULD SET BIT 0 OF THE
ACCUMULATOR, AND #FE WOULD CLEAR IT AND EOR #01 WOULD COMPLENT
IT, ALL WITHOUT AFFECTING ANY OTHER BITS IN THE ACCUMULATOR.

2.3.5 ARITHMETIC INSTRUCTIONS 'ADC, 'SEC, CLC'.
FROM LOGIC OPERATIONS WE PROGRESS AGAIN TO ARITHMETIC. LOOKING
AT ORA Z, EOR Z, AND Z WOULD LEAD ONE TO ASSUME THE EXISTENCE OF
ADD Z. WELL, THERE ISN'T ONE, THERE'S ONLY ADC Z.
BYTES: 2 ADC Z 65 "ADD WITH CARRY, ZERO PAGE"

1 SEC 38 "SET CARRY FLAG"
1 CLC 18 "CLEAR CARRY FLAG"

THIS IS MOST UNUSUAL AND A TRAP FOR UNWARY PROGRAMMERS,
ESPECIALLY THOSE USED TO /iPs WHICH POSSESS AN ADD INSTRUCTION: THE
CARRY FLAG MUST BE CLEARED BEFORE AN ADC (OR IT MUST BE IN A
KNOWN STATE E.G. f SEC = f CLC

1 ADC # 0 0 1 ADC #01 OR
'UNEXPECTED' ANSWERS Wl LL APPEAR. WHEN THE juP LEAVES THE MONITOR
USING THE GO ROUTINE THE CARRY FLAG IS SET: FAILURE TO CLEAR IT
BEFORE AN ADC RESULTS IN AN ANSWER 1 GREATER THAN EXPECTED.

THE METRONOME PRODUCES A PULSE AT THE TAPE OUTPUT PIN, PA6, WITH A
REGULAR PERIOD. THE "UP" AND "DOWN" KEYS WILL INCREASE AND
DECREASE THE PERIOD RESPECTIVELY. WITH SUITABLE ADDITIONAL
CIRCUITRY THIS COULD DRIVE A LOUDSPEAKER OR A 'STROBE' LIGHT. IN
FACT A SMALL SOUND CAN BE OBTAINED BY SIMPLY CONNECTING A LOUD-
SPEAKER ACROSS THE TAPE OUTPUT AND EARTH PINS.
THE CONSTANTS USED AT PRESENT MEAN THAT THE PULSE IS OF 1/300 SEC.
AND THE DELAY BETWEEN PULSES CAN BE VARIED FROM 1/20 SEC. TO
ABOUT 13 SECS. YOU CAN DEFINE THE PERIOD BEFORE STARTING THE
PROGRAM BY PUTTING THE REQUIRED VALUE INTO MEMORY LOCATION
0020. 20 WILL GIVE ABOUT 1 SEC BETWEEN PULSES, AND ANYTHING ELSE
PROPORTIONATELY MORE OR LESS. ONCE THE PROGRAM IS RUNNING THE
'UP' AND 'DOWN' KEYS WILL INCREMENT AND DECREMENT THE PERIOD BY
ABOUT 1/20 SEC EACH TIME THEY ARE PRESSED. THEY ALSO RESET THE
CYCLE. THIS FACILITY COULD USEFULLY BE USED FOR FINE TUNING BUT
WOULD BE TEDIOUS FOR LARGE CHANGES OF PERIOD.

METRONOME

\DDR

0200
0202
0204
0206
0209
020C
020F
0212
0214
0217
0219
021B
021D

021F
0221
0223
0225

0227
0229
022C
022D
022F
0230
0232
0234

HEX
CODE

A9
85
A9
8D
8D
20
8D
A6
20
C9
D0
E6
B0

C9
D0
C6
B0

A0
20
88
10
CA
D0
F0

1F
0E
40
22
16
CD

to
20
0C
16
04
20
E5

17
04
20
DD

0C
CD

FA

E2
D0

0E
0E
FE
0E

FE

FE

LABEL

PULSE

DELZ

DOWN

DELI
DELJ

INSTRUCTION

LDA#1F
STA REPEAT
LDA #40
STA1ADDR
STA SET PI A6
JSR WAIT
STACLR PIA6
LDXZ PERIOD
JSR DISPLAY
CMP #16
BNE DOWN
INCZ PERIOD
BCS PULSE

CMP #17
BNE DELI
DEC^ PERIOD
BCS PULSE

LDY #0C
JSR WAIT
DEY
BPLDELJ
DEX
BNEDEL2
BEQ PULSE

COMMENTS

- SET DISPLAY TO SINGLE SCAN

- DEFINE PA6 AS OUTPUT
- USE INS8154 SET BIT MODE
- USE THE 300 BAND WAIT
- USE IN58154 CLEAR BIT MODE

- LOOK AT KEYBOARD
- UP KEY?
- NO
- INCREASE PERIOD
- CARRY WAS SET BY THE COMPARE

ALWAYS
- DOWN KEY?
- NO
- DECREASE PERIOD
- CARRY WAS SET BY THE COMPARE

ALWAYS
- CYCLE TIME OF flYS SEC.

- END OF THIS PERIOD SO PULSE

4
THE EIGHT QUEENS PROBLEM IS TO FIND THE NUMBER OF WAYS IN WHICH
EIGHT QUEENS MAY BE PLACED ON A CHESS BOARD WITHOUT ATTACKING
EACH OTHER. THE PROGRAM FINDS 92 WAYS SINCE IT COUNTS ROTATIONS
AND REFLECTIONS, ALLPOSSIBLE POSITIONS ARE TRIED AS SOLUTIONS IN
THIS HIGH SPEED RECURSIVE (I.E. IS DEFINED IN TERMS OF ITSELF)

COUNTER KEYBOARD

ADDR

001D
0020

0022
0024
0026
0028
002A
002C
002E
0030
0032
0035
0037
0039
003B
003E
00N
0041
0043
0045
0048
004B
004D
004F
0051
0053
0056

0058
005A
005B

005D
005D
005F

HEX
CODE

20
90

C9
F0
C9
F0
D0
C9
85
F0
20
C6
10
30
20
20

D0
F0
20
20
D0
F0
A9
85
20
90

A9
60
A9

A9
85
60

COUNTER i

ADDF

0060
0062
0064
0066
0067
0069
0063
006D
006F
0071
0073
0076

0C
0A

07
1F
06
11
F1
00
19
ED
60
19
F7
E2
60
45

CF
F6
69
4F
D9
F6
1F
0E
0C
03

00

FF

FF
0E

FE

00

m00

00
00

FE

LABEL

DISP

CHANGE

MORE

UP

DOWN

ZOOM

SUBROUTINE

\ HEX
CODE

F6
D0
E6
38
B0
A5
D0
C6
C6
A2
20
60

1A
0D
1B

08
1A
02
1B
1A
1A
64

LABEL

INCR

DECR

NOT
UPDATE

FE

INSTRUCTION

JSR DISPLAY
BCCCHANGE

CMP # ' 0 7
BEQ DOWN
CMP# 06
BEQ UP
BNE DISP
CMP# 00
STA COUNT
BEQ DISP ^
JSR INCR I
DEC COUNT >
BPLMORE
BMI DISP)
JSR INCR >
JSR ZOOM

BNE DISP ?
BEQ UP J
JSR DECR >|
JSR ZOOM I
BNE DISP f
BEQ DOWN J
LDA#1F
STA0E
JSR DISPLAY
BCC STOP

L D A # 00
RTS
L D A # FF

L D A # FF
STA0E
RTS

INSTRUCTION

INCCNTL
BNE UPDATE
INCCNTH
SEC
BCS UPDATE
LDACNTL
BNE NOT
DEC CNTH
DECCNTL
LDX#IE
JSR QHEXTD1
RTS

COMMENTS

- START OF 001C
- LOOK FOR KEY
- CHECK IF CONTROL KEY CARRY

SET IF SO

INCREMENT NO OF TIME OF TEY

RAPID INCREMENT

RAPID INCREMENT

SET FOR ONE SCAN ONLY

CHECK IF KEY DEPRESSED CLEAR
IF ONE IS

RESET SO THAT JSR DISPLAY
WAITS FOR INPUT

COMMENTS

ANOTHER TRAP FOR THOSE USED TO DIFFERENT juPs IS THE DECIMAL FLAG.
INSTEAD OF A SINGLE "DECIMAL ADJUST" INSTRUCTION TO ADJUST THE
RESULT OF BINARY ARITHMETIC ON B.C.D. NUMBERS TO B.C.D. THERE ARE
TWO INSTRUCTIONS
BYTES: 1 SED F8 "SET DECIMAL MODE"

1 CLD D8 "CLEAR DECIMAL MODE"
WHICH INSTRUCT THE PROCESSOR TO DO AUTOMATICALLY (OR NOT DO) THE
ADJUSTMENT AFTER ARITHMETIC OPERATIONS. THIS RESULTS IN SHORTER,
FASTER PROGRAMS FOR HANDLING B.C.D. ARITHMETIC WHICH, MERELY
BY CHANGING THE DECIMAL MODE FLAG, Wl LL HANDLE BINARY ARITHMETIC.
IN ORDER TO FULLY UTILISE THE /zP's POWER THE MONITOR SUBROUTINES
FOR FETCHING KEYS & OUTPUTTING DATA TO THE DISPLAY HAVE BEEN
WRITTEN WITHOUT ARITHMETIC SO THEY MAY BE CALLED WITH THE
DECIMAL FLAG SET OR CLEARED & THEY Wl LL NOT AFFECT IT.
SO LET'S DO A DECIMAL ADDITION;

SED
CLC
LDA Z 21
ADC Z 20
JSR FE60
JMP FF04

OUR STANDARD PROGRAM HAS BEEN EXTENDED BACKWARDS BY ONE BYTE,
THE SED INSTRUCTION. THIS SHOULD BE INCLUDED (BY ,0,0,2,F,$T<3-'—••-„
THE FIRST TIME THE PROGRAM IS RUN, BUT MAY BE OMMITTED (K,0,0,3,0,4)
ON SUBSEQUENT RUNS. THIS LITTLE PROGRAM Wl LL TELL US THAT
22 + 11 = 33, IT Wl LL SAY THAT 35 + 26 = 61 AND THAT 50 + 51 = 01 WHOOPS!
THE PROGRAM AT FE60 ONLY DEALS WITH PUTTING THE BYTE IN THE
ACCUMULATOR ON THE DISPLAY. IT PAYS NO ATTENTION TO THE CARRY
FLAG, INDEED IT CHANGES THE STATE OF THE CARRY FLAG ITSELF, SO
THAT WE CANT IMMEDIATELY CALL FE60, HAVE IT WRITE ON THE DISPLAY
& RETURN THEN WRITE OUT THE STATE OF THE CARRY SOMEHOW.WHAT WE
NEED IS:
I SAVE THE CARRY FLAG
II USE FE60
III GET THE CARRY FLAG BACK & WRITE IT OUT SOMEHOW
A FRENZIED SEARCH THROUGH THE MNEMONICS REVEALS THAT THERE ARE
NO MNEMONICS LIKE LDC (LOAD C) OR STC (STORE C)
A CLOSER LOOK AT THE MICROPROCESSOR IS REQUIRED.

002 F
0030
0081
0033
0035
0038

F8
18
A5 21
65 20
20 60FE
4C04 FF

CHAPTER 3: INSIDE THE 6502
SO FAR THE PROCESSOR'S INTERNAL WORKINGS ARE

3.1 THE ACCUMULATOR, PROGRAM COUNTER, STATUS REGISTER

15
PC

0 BIT NUMBER

I A I ACCUMULATOR

0
| PROGRAM COUNTER

~C~l CARRY FLAG

F D I DECIMAL MODE FLAG

THE CARRY & DECIMAL MODE FLAGS HAVE BEEN TREATED SEPARATELY TO
DATE. THEY ARE ACTUALLY MEMBERS OF A SPECIAL REGISTER CALLED THE
PROCESSOR STATUS REGISTER^.

N V B D

INTERRUPT DISABLE

ZERO (THIS FLAG 1 WHEN
0 SOMETHING HAS BECOME 00)

] — CARRY

DECIMAL FLAG

BREAK COMMAND EXECUTED

OVERFLOW

NEGATIVE

CAN WE, THEN, USE LDP & STP? NO, THEY DON'T EXIST EITHER.(FUME). IN
ORDER TO SOLVE THIS PROBLEM WE MUST INTRODUCE THE STACK.
DID YOU WONDER JUST WHAT HAPPENED TO PC DURING A JSR? YOU WERE
TOLD THAT IT WAS'SAVED'. WHERE? HOW? IT WOULD BE TERRIBLE TO HAVE
TO SPECIFY WHERE IT HAD TO BE STORED. WHAT'S NEEDED IS SOME PLACE
WHERE IT CAN BE PUT DOWN AND PICKED UP AGAIN. IT WOULD BE GOOD TO
ALLOW NESTED SUBROUTINES:

ADDR HEX
CODE

0213 95 10
0215 A9 61
0217 CA
0218 10 02

021A A2 07
021C 95 10
021E 86 20
0220 A2 0E

0222 20 0C
0225 C5 20
0227 F0 05
0229 CA
022A D0 F6
022C F0 E1
022E A9 1C
0230 A6 20
0232 95 10
0234 A9 FF
0236 85 0E
0238 20 0C
023B 90 C3
023D 4C 04
023F

LABEL

INSERT

OLDX

FE WAIT

HIT

€>
FF \

INSTRUCTION

STAZ X 10
LDA#DUCK
DEX
BPLOLDX

LDX #07
STAZ X 10
STX Z 20
LDX #TIME

JSR DISPLAY
CMP Z 20
BEQ H1T
DEX
BNEWAIT
BEQ REMOVE
LDA #DEAD DUCK
LDX Z 20
STAZ X10
LDA#F,F.
ST&Z 0E
JSR DISPLAY
BCC BEGIN
JMP RESTART

COMMENTS

PUT NEW DUCK ON
IN NEW POSITION
BUT NOT OVER THE END OF THE
DISPLAY

- DISPLAY INTERVAL IS SET BY THE
BYTE LOADED INTO X

- HIT?

FINISHED WAITTIME
PUTIN A DEAD DUCK

TEST FOR CONTINUATION

OR BACK TO THE MONITOR

MISCELLANEOUS
1
THE COUNTER PROGRAM COULD BE USED AS A SUBROUTINE IN A LONGER
PROGRAM WHEN "JSR INCR" AND "JSR DECR" WOULD INCREMENT OR
DECREMENT THE DISPLAY. IF THE PROGRAM APPENDED IS ALSO ENTERED
THE DISPLAY WILL INCREASE OR DECREASE RAPIDLY IF "UP" OF "DOWN"
KEYS ARE DEPRESSED. THIS Wl LL BE STOPPED BY ANY HEX KEY. IT Wl LL
INCREMENT BY THE INDICATED AMOUNT IF KEYS 1-F ARE DEPRESSED AND
WILL IGNORE ALL OTHER KEYS.
YOU SHOULD PARTICULARLY NOTICE THAT A JSR DISPLAY RETURNS WITH
THE CARRY BIT CLEAR AND THE ACCUMULATOR HOLDING THE VALUE OF
THE KEY PRESSED FOR THE NUMERICAL KEYS, AND THE CARRY BIT SET AND
THE VALUES 0-7 IN THE ACCUMULATOR FOR THE CONTROL KEYS. IF
MEMORY LOCATION 0E, WHICH IS DEDICATED TO THE MONITOR AND SHOULD
NOT NORMALLY BE USED IN PROGRAMS, HAS THE MOST SIGNIFICANT BIT
CLEAR THEN JSR DISPLAY Wl LL SCAN ONLY ONCE, IF IT IS SET IT Wl LL WAIT
FOR A KEY TO BE DEPRESSED BEFORE RETURNING TO THE PROGRAM. IT IS
A GOOD IDEA TO LOAD IT WITH ' IF' IF YOU WISH TO USE THIS FACILITY AS
OTHER VALUES MAY CAUSE YOU DIFFERENT PROBLEMS. AGAIN SEE THE
REST OF THIS MANUAL IF YOU REALLY WISH TO UNDERSTAND THE PROCESS.

\DDR

027C
027 E
0280
0282
0284
0286
0287
0289
028B
028D

028 F
0291
0293
0294
0296
0299
029B
029D
029 F
02A0
02A2
02A3
02A5
02AY
02A9
02AC
02AD
02AE
02 A F
02B1
02B2

HE>C LABEL
CODE
69
46
69
46
69
4A
B0
C6
D0
A2

B5
95
CA
10
4C
A9
A2
95
CA
10
D8
A2
A0
B5
20

Q£
CA
D0
60

00
2A
00
2B
00

BF
1F
E8
03

24 BAT
20

F9
00 02
00 DSPGAP
07
10 CLEAR

FB

04
mo**
1F AROUND
7A FE
n

F6

INSTRUCTION COMMENTS

ADC #00
LSR ANAL + 2
ADC #00
LSR ANAL+ 3
ADC #00
LSRA
BCSONEOFF - NOT A GOOD MOVE
DEC COUNT
BNECONT - KEEP CHECKING THE MOVE
LDX#03 - GOOD MOVE, TRANSFER TO

ACTUAL STACKS
LDA2X POSS
STAZX STACK
DEX
BPL BAT
JMPHUMMOV - OPPONENT.
LDA#00
LDX #07
STAZXD - CLEAR THE DISPLAY FIRST
DEX
BPL CLEAR
CLD - CLEAR DECIMAL MODE
LDX #04 - DISPLAY STACKS
LDY#01 0"?
LDAZX STACK - 1
JSR HEXTD
hNY 3>e V
WY T>£ y
DEX
BNEAROUND

THE DUCKSHOOT GAME IS A SPEED TEST: YOU HAVE TO SHOOT THE FLYING
DUCKS. THEY SUCCESSIVELY ENTER FROM THE RIGHT AND FLY TOWARDS
THE LEFT AT A SET SPEED. YOU SHOOT A DUCK BY PRESSING ITS CURRENT
POSITION ON THE KEYBOARD. THE LEFT MOST DISPLAY IS 0,THE RIGHTMOST
DISPLAY IS 7. WHEN A DUCK IS HIT IT DIES. THE GAME MAY BE RESTARTED
WITH ANY HEX DIGIT KEY

DUCK

ADDR

0200
0202
0204
0206
0208
020A
020C
020D
020F
0211

SHOOT

HEX

CvJuc
A9 1F
85
A9
A2
86
95
CA
10
A9
A6

0E
00
07
20
10

FB
00
20

LABEL

BEGIN

CLEAR

REMOVE

INSTRUCTION

LDA#1F
STA Z 0E
LDA #00
LDX #07
STX Z 20
STAZX 10
DEX
BPL CLEAR
LDA #00
LDX H 20

COMMENTS

- SINGLE SCAN DISPLAY ROUTINE

- CLEAR THE DISPLAY

- TAKE THE OLD DUCK OFF

MAIN PROGRAM

JSR ALBERT ALBERT PROGRAM

JSR ALGERNON - ALGERNON PROGRAM

RTS RTS

WE CANT JUST SAY THAT PC IS TO BE SAVED IN LOCATION, SAY, L & M - W E
WOULDN'T GET BACK FROM ALBERT SINCE THE CALL TO ALGERNON WOULD
HAVE DESTROYED THE NECESSARY INFORMATION IN L & M. (IT IS WORTH
NOTING HERE THAT L & M COULD BE " C A L L E D " - 2 " C A L L E D " - 1 . THEN A
CALL TO ALBERT AS A SUBROUTINE WOULD STORE THE RETURN ADDRESS
JUST BEFORE THE START OF ALBERT ALLOWING NESTED SUBROUTINES AS
ABOVE. A PROBLEM IS THAT THIS DOES NOT WORK WITH READ ONLY
MEMORY, LIKE THE MONITOR).
3.2 THE STACK POINTER
WE NEED SOMETHING WHICH WILL DECIDE WHAT L & MARE TO BE,
DEPENDING ON WHICH SUBROUTINE WE ARE IN.AN OBVIOUS CHOICE IS TO
USE AN ARRAY OF MEMORY LOCATIONS, AND A VARIABLE WHICH POINTS TO
THE CURRENT LOCATION OF L & M.EACH TIME WE DO A JSR WE STEP UP THE
POINTER & EACH TIME WE DO AN RTS WE STEP IT DOWN.

RETURN ADDRESS ARRAY

[POINTER I '

WITH ACORN WE'LL NEED TWO BYTES FOR EACH RETURN ADDRESS. THIS IS
NO TROUBLE, WE JUST INCREMENT & DECREMENT THE POINTER TWICE. THE
WHOLE PROCESS IS CARRIED OUT BY THE PROCESSOR AUTOMATICALLY ON
EACH JSR & RTS, THE POINTER IS CALLED THE STACK POINTER AND IS A
SPECIAL8 BIT REGISTER INSIDE THE PROCESSOR. THE ARRAY IS USUALLY
CALLED A STACK SINCE IT CAN ALSO BE USED TO STORE THINGS OTHER
THAN RETURN ADDRESSES. THE ACTUAL STACK RUNS FROM 01 FF DOWN TO
01)00, AND IT STARTS AT THE TOP: AN EMPTY STACK HAS STACK POINTER
AT FF. A BYTE IS PUT ON THE STACK AND THE POINTER IS DECREMENTED TO
POINT AT THE NEXT LOCATION; THE POINTER IS INCREMENTED AND A BYTE
LOADED FROM THE STACK IN THE REVERSE OPERATION. NO CHECK IS MADE
FOR THE 00 TO FF DECREMENT INDICATING AN OVERFLOWED STACK, SO
PROGRAMS THAT REQUIRE MORE THAN 256 BYTES OF STACK SPACE Wl LL
MYSTERIOUSLY FAIL. SINCE THIS IS 128 CONSECUTIVE JSR'S, THE PROBLEM
WONT BE ENCOUNTERED VERY OFTEN.. .
NOW THE PROCESSOR STATUS REGISTER CAN BE PUSHED ONTO THE STACK:

PLP 28 "PULLP"
PHP 08 "PUSH P"

AND SO WE MAY SAVE IT BEFORE A SUBROUTINE CALL AND RECOVER IT

AFTERWARDS
PHP
JSR. . . .
PLP

THE SEQUENCE OF STACK OPERATIONS IS

TOP
TOP

TOP

PCH
PCL

TOP

PCH
PCL

TOP

PCH
PCL

PHP JSR PROGRAM OPERATES RTS PLP

SO WE HAVE NOW MANAGED TO SAVE THE CARRY FLAG, USE FE60, AND
REGAIN THE CARRY FLAG. WE WISH TO WRITE IT OUT, SO IT WOULD HAVE
BEEN BETTER TO WRITE.

PHP
JSR FE60
PLA PULL BYTE FROM STACK INTO A

SINCETHISGIVESTHE CARRY FLAG IN A, AS THE LEAST SIGNIFICANT BIT,
TO GET RID OF THE REST OF THE BITS OF THE RECOVERED STATUS
REGISTER, WE CAN SIMPLY AND # 01. NOW A CONTAINS 0 OR 1 DEPENDING
ON THE CARRY FROM ORIGINAL SUM. OUR PROGRAM NOW IS

SED SET UP FOR DECIMAL ADD
CLC
LDA Z 21 DOIT
ADC Z 20
PHP SAVE CARRY
JSR FE60 WRITE OUT TWO DIGITS

ON DISPLAYS6&7

ADDR

0210
0212
0214
0215
0216
0218
021A
021C
021E
021 F
0221
0222
0223
0224
0225
0227
0229
022B
022 E
0230
0232
0235
0236
0238
0239
023B
023D
023F

HEX LABEL
CODE
29 7F
95 11
E8
E8
E0 07
90 E9
A2 00
F0 E5
A8 MINUS
F0 E8
8A
4A
AA
38
B5 20
E5 0D
95 20
20 99 02 COMMOV
84 0E
A2 00
20 0C FE WAIT
CA
D0 FA
CA
86 0E
A0 03
A2 03
B5 20

0241 95 24
0243 CA
0244 10 F9
0246 A2 03
0248 B5 24

NEXTS
BLOCK

ONEOFF
BRICK

«•

PLA
AND #01 A = 0 (NO CARRY FROM SUM)

OR A = 1 (CARRY FROM SUM)

NOW ALL WE NEED TO DO IS WRITE OUT THE ACCUMULATOR ON DISPLAY
NO.5. THE WAY WE WROTE OUT THE FIRST TWO DIGITS OF THE RESULT WAS
TO USE A MONITOR SUBROUTINE WHICH DID JUST THAT. YOU'VE PROBABLY
NOTICED THAT THE MONITOR ONLY PUTS A DOT ON DISPLAY 5 (THE 3RD

024A 95 28
024C CA
024D 10 F9
024F A2 03
0251 B9 24 00
0254 38
0255 E9 00
0257 99 24 00
025A 99 28 00
025D B0 12
025F 88
0260 10 DB
0262 B5 20
0264 F0 05
0266 D6 20
0268 4C 00 02
026B CA
026C 10 F4
026E 4C 04 FF
0271 A9 04 CHECK
0273 85 1F
0275 A9 00 CONT
0277 46 28
0279 2A
027A 46 29

o l

TRY

EMPTY

INSTRUCTION

AND#7F
STA2X D + 1
INX
INX
CPX #07
BCCSHIFTPT
LDX #00
BEQSHIFTPT
TAY
BEQ CHEAT
TXA
LSRA
TAX
SEC
LDAZX STACK
SBC KEY
STAHX STACK
JSR DSPGAP
STY REPEAT
LDX #00
JSR DISPLAY
DEX
BNE WAIT
DEX
STX REPEAT
LDY #03
LDX #03
LDAHX STACK

STA2X POSS
DEX
BPLBLOCK
LDX # 0 3
LDA2X POSS

STA2X ANAL
DEX
BPLBRICK
LDX #03
LDA, Y POSS
SEC
SBC #01
STA, Y POSS
STA, Y ANAL
BCSCHECK
DEY
BPLNEXTS
LDAZX STACK
BEQ EMPTY
DECZX STACK
JMP HUMMOV
DEX
BPLTRY
JMP RESTART
LDA #04
STA COUNT
LDA #00
LSR ANAL
ROLA
LSR ANAL+ 1

COMMENTS

- MOVE FORWARD

- END OF STACKS?

- PREVENT ZERO FROM BEING USED

- ADDRESS OF REQUIRED STACK

- DO THE PLAYER'S MOVE

- SHOW STACKS

- THINKING TIME

- CLEAR REPEAT STATUS

- TRANSFER STACK TO POSS
- POSS REPRESENTS THE POSSIBLE

COMPUTER
- MOVES

TRANSFER POSS TO ANAL
ANAL REPRESENTS THE MOVE
BEING
ANALYSED

POSS CONTAINS POSS IB LE MOVE
ANAL CONTAINS POSSIBLE MOVE

- TRY ALL STACKS
- CHECK IF STACK EMPTY

- MAKE DESPERATE MOVE

- LOST.

- EVALUATE MOVE

ADDR

0207
0209
020B
020D
020 E

HEX LABEL
CODE
E0 07
D0 F7
85 17
60

GAMES PROGRAMS
1

INSTRUCTION

CPX #07
BNE LOOP
STA Z D + 7
RTS.

COMMENTS

- KEEP GOING
- NEW DATA

NIM ISATRADITIONALGAME INWHICHTHE PLAYERS ALTERNATIVELY REMOVE
STICKS, OR COINS, OR WHATEVER FROM ONE OF SEVERAL STACKS. THE
ONLY RULES ARE THAT YOU MUST TAKE AT LEAST ONE PIECE PER MOVE
AND THAT YOU CAN ONLY REMOVE PIECES FROM ONE STACK PER MOVE.
THERE IS A WELL-DEFINED STRATEGY FOR OPTIMAL PLAY BUT THIS DOES
NOT GUARANTEE A WIN UNLESS THE OPPONENT MAKES A MISTAKE OR THE
INITIAL SITUATION IS AGAINST HIM. THE COMPUTER PLAYS WELL BUT, WITH
LUCK, CAN BE BEATEN. THE WINNER IS THE PLAYER WHO REMOVES THE
LAST PIECE

IN THIS VERSION OF THE GAME THERE ARE FOUR STACKS OF FROM 0-F
PIECES. YOU MUST ENTER THE SIZE OF YOUR STACKS IN MEMORY
LOCATIONS20-23 BEFORE STARTING THE GAME. THE GAME STARTS AT 002F
AND YOUR MOVE OR 0180 AND THE COMPUTER'S MOVE. ON RUNNING, THE
DISPLAY WILL SHOW A- B C D WHERE A,B,C,D ARE THE CONTENTS OF
THE STACKS. ANY CONTROL KEY Wl LL MOVE THE POINTER (FULL STOP)
AROUND THE STACKS. WHEN IT POINTS TO THE STACK FROM WHICH YOU
WISH TO REMOVE PIECES PRESS THE KEY CORRESPONDING TO THE NUMBER
YOU WISH TO REMOVE. ZERO IS I LLEGAL AND WILL NOT BE ALLOWED. IF
YOU SUBTRACT MORE PIECES THAN ARE IN THE STACK THE GAME WILL GET
VERY CONFUSED.
AFTER REMOVALOF PIECES THE DISPLAY WILL SHOW THE CURRENT
SITUATION AND THE COMPUTER Wl LL MAKE ITS MOVE.
CONTINUE UNTIL SOMEONE (SOMETHING?) WINS.
YOU MIGHT LIKE TO TRY AND WRITE SUBROUTINES TO PRINT MESSAGES
ON THE DISPLAY IN THE EVENT OF EITHER A HUMAN OR COMPUTER
VICTORY. A CHECK WOULD HAVE TO BE INSERTED TO DECIDE A
COMPUTER WIN BUT THE JUMP FOR A HUMAN WIN IS ALREADY THERE
UNDER THE MNEMONIC JMP MESSAGE, THOUGH THE CODE IN FACT JUMPS
TO THE HUMAN MOVE.

NIM

0200
0203
0205
0207
0209
020C
020E

20
B5
09
95
20
90
B5

99
11
80
11
0C
10
11

02

FE

HUMMOV
SHIFTPT

CHEAT

JSR DSPGAP
LDZX D + 1
ORA#80
STAZX D + 1
JSR DISPLAY
BCC MINUS
LDAHX D + 1

NOT RELOCATABLE
CLEAR DECIMAL
DISPLAY STACKS
SET DECIMAL POINT ON

WAIT FOR INPUT

REMOVE CURRENT DECIMAL POINT

FROM THE RIGHT) AND SUSPECT THAT IT CAN'T PUT ANYTHING ELSE THERE.
THIS IS TRUE, BUT IT DOESN'T MEAN THAT THERE ISN'T A MONITOR SUB-
ROUTINE THAT CAN DO THE JOB. SUCH A SUBROUTINE LIVES AT FE7A. IT IS
DESIGNED TO PUT THE LOWEST FOUR BITS OF THE ACCUMULATOR ONTO
ANY OF THE DISPLAYS, ASA READABLE CHARACTER. THIS IS JUSTWHATWE
NEED - BUT HOW DO WE TELL THE SUBROUTINE WHICH DISPLAY TO USE?

3.3 THE INTERNAL REGISTERS X ANDY.
WELL, BACK TO THE/iP. THIS IS WHAT IT LOOKS LIKE INSIDE

7

A

BIT NUMBER

ACCUMULATOR

15
Y

J X-REGISTER l lNDEX
~\ Y-REGISTER /REGISTERS

PC PROGRAM COUNTER

STACK POINTER

PROCESSOR STATUS

TWO NEWCOMERS, YOU'LL NOTICE! X & Y ARE'INDEX REGISTERS', THEY Wl LL
BE DEALT WITH MORE THOROUGHLY IN A FEW MORE PAGES, BUT WHAT
MATTERS NOW IS THE USE FE7A MAKES OF THEM:
I FE7A NEITHER CARES ABOUT, NOR CHANGES X
II FE7A DOESN'T CHANGE Y, BUT THE DISPLAY IT PUTS A ONTO IS
CONTROLLED BY Y THAT IS, THE LOWER 4 BITS OF A ARE TRANSFORMED
INTO THE CORRECT SEQUENCE OF BITS TO REPRESENT THEIR HEXADECIMAL
CHARACTER AS IT SHOULD APPEAR ON THE 7 SEGMENT DISPLAY. THEN THIS
IS STORED IN MEMORY TO AWAIT THE SUBROUTINE WHICH ACTUALLY PUTS
THINGS ON DISPLAY.
ALTHOUGH FE7A MAKES NO RESTRICTIONS ON THE SIZE OF Y, THE MONITOR
SUBROUTINE WHICH DISPLAYS THEM ONLY KNOWS ABOUT THE FIRST 8
(NUMBERED. OF COURSE, 0-7) OF THEM, IN LINE WITH THE ACTUAL DISPLAY
HARDWARE. DISPLAY 0 IS THE LEFTMOST, DISPLAY 7 IS THE RIGHTMOST.
TO KEEP THE MONITOR AS EFFICIENT AS POSSIBLE THE SUBROUTINE AT
FE60 USES FE7A. IT FOLLOWS THAT IT MUST HAVE LOADED Y WITH 7 & 6,
AND SINCE FE7A DOESN'T CHANGE Y, Y IS STI LL SET TO THE LAST USED OF
THESE WHICH IS 6. SO. INSTEAD OF USING

LDY#05 A0 05 "LOAD Y WITH THE NEXT BYTE" (05 HERE)
WE CAN USE

DEY 88 "DECREMENT (IN HEXADECIMAL) Y BY
ONE"

TO SET Y TO 5, THUS SAVING A WHOLE BYTE! (BUT NO TIME, THE TWO
INSTRUCTIONS ARE EXECUTED IN THE SAME TIME, 2/xS). THE COMPLETE
PROGRAM IS

SED
CLC
LDA £21
ADC Z 20
PHP
JSR FE60
PLA
AND # 0 1
DEY
JSR FE7A
JMP FF04

002 F F8
0030 18
0031 A5 21
0033 65 20
0035 08
0036 20 60
0039 68
003A29 01
003C 88
003D20 7AFE
0040 4C04FF

FE

AND SO, AT LAST, WE FIND THE ANSWER TO501O + 501O IS

K. 002F 100

PERHAPS WE SHOULD HAVE CLEARED THE DISPLAY? OR MADE IT SHOW THE
NUMBERS TO BE ADDED TOGETHER? OR ACTUALLY FETCHED THE TWO
NUMBERS USING KEYBOARD AND DISPLAY LIKE THE MONITOR DOES? OR
SOME COMBINATION OF THESE?

3.4 MAKING OUR PROGRAM 'FRIENDLY'
USING THE MONITOR SUBROUTINE AT FE88 IT IS EASY TO DO THE THIRD
OPTION. FE88 IS THE ROUTINE WHICH FETCHES 4 DIGIT NUMBERS,
TERMINATED BY ANY COMMAND KEY, INTO THE TWO BYTES IN ZERO PAGE
X & X + 1 [i.e. IF X CONTAINS 20, INTO 0020 (LOW BYTE = RH PAIR OF
NUMBERS) & 0021] JUST WHAT WE NEED!
002A
002B
002D
0030
0031
0033
0035
0036
0039
003A
003C
003D
0040

F8
A2 20
20 88FE
18
A5 21
65 20
08
2060 FE
68
29 01
88
20 7AFE
4C04 FF

SED
LDX# 20
JSR FE88
CLC
LDAZ21
ADC Z 20
PHP
JSR FE60
PLA
AND#01
DEY
JSR FE7A
JMP FF04

ONCE AGAIN THE PROGRAM HAS BEEN EXTENDED BACKWARDS SINCE THE
GREATER PART OF IT HAS ALREADY BEEN ENTERED (UNLESS YOU'VE
SWITCHED OFF AND LOST IT ALL)
RUNNING THIS PROGRAME (G0,0,2,A, k) PRODUCES

K. 5 05 0 (ON THE ASSUMPTION THAT 0020 &0021 STILL
CONTAIN THE 50S ADDED TOGETHER AS BEFORE)

THE Fl RST PROGRAM, TEST, IS TRIVIAL: IT JUST SENDS A PARTICULAR BYTE
TO TAPE REPETETIVELY. IT MUST BE STOPPED BY RESET. RECORD A FEW
MINUTES OF THIS,THEN LOAD IT USING LOAD. DEVIATIONS FROM THE
STATIONARY PATTERN ARE EASY TO SEE. THE SECOND PROGRAM, RETAG,
IS RELOCATABLE. IT ACTS JUST LIKE THE MONITOR'S STORE ROUTINE,
EXCEPT THAT IT ASKS FOR AN EXTRA ADDRESS. THE DATA WHICH IS
STORED IS THAT STARTING AT THIS LAST ADDRESS, IT PRETENDS TO BE
SITUATED BETWEEN THE FIRST TWO ADDRESSES. INCORPORATE THE
REQUIRED STATE OF ZERO PAGE REGISTERS IN FRONT OF YOUR DATA,
THEN TOAD AND AUTO RUN' PROGRAMS MAY BE CREATED.

NOT RELOCATABLETAPE PROGRAMS

ADDR HEX LABEL
CODE

0200 A9 55 TEST
0202 20 B1 FE
0205 4C 00 02
0208 A9 F1 RETAG
020A 85 10
020C A2 06
020E 20 88 FE
0211 A2 08
0213 86 10
0215 20 88 FE
0218 A9 46
021A 85 10
021C A2 20
021E 20 88 FE

0221 A2 04
0223 B5 05 ADRSS
0225 20 B1 FE
0228 CA
0229 D0 F8
022B A0 00 DATAS
022D B1 20
022F E6 20

0231 D0 02
0233 E6 21
0235 20 B1 FE NOI1NC
0238 20 A0 FE
023B D0 EE
023D 4C 04 FF
0240

INSTRUCTION

LDA #55
JSR PUTBYTE
JMP TEST
LDA#F1
STAD
LDX #06
JSR QDATFET
LDX #08
STX D
JSR QDATFET
LDA #46
STAD
LDX #20
JSR QDATFE7

LDX #04
LDA Z,X 05
JSR PUTBYTE
DEX
BNE ADDRSS
LDY #00
LDA(20),Y
INC 20

BNENOINC
INC 21
JSR PUTBYTE
JSR COM16
BNE DATAS
JMP RESTART

COMMENTS

- THE TEST BYTE
- SEND IT
- KEEP SENDING IT
- F. PROMPT

FIRST ADDRESS

PROMPT
SECOND ADDRESS

PROMPT

- LAST ADDRESS: ACTUAL DATA
START

- SEND FAKE ADDRESSES

PROPER DATA
INCREMENT PROPER DATA
COUNTER

SEND DATA
CHECK FAKE ADDRESSES FOR END

THE SCROLL PROGRAM SHIFTS THE WHOLE DISPLAY ONE LEFT, AND
ENTERS THE NEW INFORMATION, IN A, ON THE FAR RIGHT.
SCROLL

^DDR

0200
0202
0204
0206

HEX
CODE
A2 00
B4 11
94 10
E8

LABEL

LOOP

INSTRUCTION

LDX #00
LDY ZX D + 1
STY ZX D
INX

COMMENTS

- MUST GO FORWARDS
- PICK-UP DATA ON RIGHT
- & MOVE IT ONE LEFT

025A 00 71
025D 50 00
025F

77

THE RELOCATOR FIRST FETCHES THE THREE ADDRESSES IT REQUIRES, THE
ADDRESSES OF THE START & END OF THE MEMORY SECTION TO BE MOVED,
AND THE ADDRESS OF THE START OF THE AREA TO WHICH THE MOVE IS TO
TAKE PLACE. THE PROMPTS ARE F., & t RESPECTIVELY. AFTER
TERMINATING THE LAST ADDRESS, THE MOVE TAKES PLACE. MOVES UP BY
LESS THAN THE LENGTH OF THE MATERIAL TO BE USED WILL NOT BE
SUCCESSFUL (I.E. t - F ., IF POSITIVE, SHOULD BE GREATER THAN - t)

RELOCATOR
ADDR

0200
0202
0204
0206
0209
020B
020D
020 F

0212
0214
0216
0218

021B
021D
021 F
0221
0222
0224
0226
0229
022B
022D

HEX
CODE
A2
86
A2
20
A2
86
A2
20

A2
86
A2
20

A2
A1
91
C8
D0
E6
20
D0
4C

F1
10
20
88
46
10
22
88

78
10
24
88

1A
06
24

02
25
A0
F2
04

LABEL

FE

FE

FE

MOVE

FE NOINC

FF

INSTRUCTION

LDX #F1
STXZ D
LDX #20
JSR QDATFET
LDX #46
STXZ D
LDX #22
JSR QDATFET

LDX #78
STXZ D
LDX #24
JSR QDATFET

LDX #1A
LDA (06,X)
STA (24,Y)
INY
BNE NOINC
INC 2 25
JSR COM16
BNE MOVE
JMP RESTART

COMMENTS

- SET UP FROM PROMPT F.

- AND GET ADDRESS

- SET UP END PROMPT

- AND GET SECOND ADDRESS-
MOVE THE DATA BETWEEN THESE
ADDRESSES

- SET UP TO PROMPT

- AND GET BASE ADDRESS-MOVE
TO HERE & SUCCESSIVE
LOCATIONS

- DO THE MOVE

- INCREMENT THE TO ADDRESS

- USECOM16TO DO THE LIMIT TES1

YOU SHOULD ENTER THE TWO PAIRS OF NUMBERS YOU WISH ADDED
TOGETHER AS IF THEY FORMED AN ADDRESS. TERMINATING YOUR ENTRY
WITH k INSTANTLY PRODUCES THE RESULT

K. 5 05 0 100

LOOKING BACK OVER THE PROGRAM, AND EXAMINING THE MONITOR
LISTING,WILLREVEALTHAT IT TOOK AD 1 6 (OR 1731O) BYTES OF CODE TO
ACHI EVE THIS. THE ACTUAL OPERATION USED 6 BYTES OF CODE (SED; CLC;
LDAZ; ADC Z) WHILE THE OTHER 1671O ARE THERE 'MERELY'TO DISPLAY
THE RESULT& FETCH THE INFORMATION NEATLY(THE CODE CALCULATIONS
DO NOT CONSIDER THE 161O BYTES OF CHARACTER FONT OR THE 11 1 O

BYTES OF TEMPORARY STORAGE ALSO USED)

CHAPTER 4: THE REMAINDER OF THE INSTRUCTION SET
4.1 BRANCHES
THINKING ABOUT THE FE88 PROGRAM, YOU SHOULD REALIZE THAT IT DOES
SOMETHING OF THE FORM

FETCH NEXT KEY
i f KEY IS A COMMAND KEY THEN RETURN

THIS IS A CONDITIONAL TRANSFER OF CONTROL AND REPRESENTS SOME
NEW INSTRUCTIONS AND A DIFFERENT WAY OF CHANGING THE PROGRAM
COUNTER. AN OPERATION LIKE ADC DOES MORE THAN ADDING TWO BYTES
AND THE CARRY FLAG TOGETHER AND OUTPUTTING A CARRY. IT ALSO SET!
SOME OF THE OTHER FLAGS IN P:

THE £ FLAG IS SET IF THE RESULTING BYTE WAS ZERO
THE V FLAG IS SET IFTHERE WAS A 2'S COMPLEMENT OVERFLOW
THE N FLAG IS SET IF THE RESULT WAS A NEGATIVE 2'S COMPLEMENT
NUMBER - I.E. BECOMES BIT 7 OF THE RESULT.

THESE FLAGS ARE ABLE TO CAUSE CONDITIONAL TRANSFER BY USING
THE APPROPRIATE ONE OF THE EIGHT 'BRANCH' INSTRUCTIONS. THE
MECHANISM EMPLOYED IS TO PERFORM A 2'S COMPLEMENT ADD BETWEEN
THE PROGRAM COUNTER AND THE SECOND BYTE OF THE BRANCH
INSTRUCTION THUS PERMITTING THE TRANSFER TO BE -128. . . +127 BYTES
FROM THE NEXT INSTRUCTION. THIS IS CALLED 'RELATIVE ADDRESSING'
AND IS A POSITION INDEPENDENT METHOD OF TRANSFER, THE EIGHT
BRANCH INSTRUCTIONS ARE ASSOCIATED TWO TO EACH OF THE C, 2, V &
N FLAGS, ONE OF WHICH BRANCHES IF THE FLAG IS SET, THE OTHER
BRANCHES IF IT IS CLEAR.

TO CLARIFY THIS LET'S LOOK AT AN EXAMPLE:
"BRANCH IF CARRY SET"
SET CARRY

* + 0 ^BCS 03
* + 2 SEC
* + 3 " ^ C S 0 1
* + 5 L i C L C CLEAR CARRY
* + 6 U
(THE ARROWS ARE PUT IN FOR CLARITY)
WE'LL NEED TO CONSIDER THIS PROGRAM BOTH WITH THE CARRY SET &
WITH IT CLEAR
I CARRY IS CLEAR

INSTRUCTION I DOES NOT TRANSFER CONTROL SO WE DO INSTRUCTION I I ,
SEC,NOW INSTRUCTION III TRANSFERS CONTROL SINCE THE CARRY IS NOW
SET. 01 IS ADDED TO THE PC (= * + 5) TO GIVE* + 6 AS THE ADDRESS OF THE
NEXT INSTRUCTION.

II CARRY IS SET
INSTRUCTION I TRANSFERS CONTROL. 03 IS ADDED TO THE PC (= * + 2) TO
GIVE * + 5 AS THE ADDRESS OF THE NEXT INSTRUCTION, INSTRUCTION IV.
CLC.

SO IF THE CARRY WAS CLEAR IT IS SET; IF IT WAS SET IT IS CLEARED, SO THE
PROGRAM COMPLEMENTS THE CARRY (THERE ARE QUICKER METHODS,
INDEED IT CAN BE DONE WITH 3 INSTRUCTIONS IN 4 BYTES)*
AND WE CAN GO BACKWARDS:

0
2
3
5

BCS
I SEC
T BCS

CLC
FB

BRANCH IF CARRY SET
SET CARRY
BRANCH IF CARRY SET
CLEAR CARRY

IF THE CARRY IS SET THE PROGRAM IS AS BEFORE IF IT IS CLEARED WE SET IT
& BRANCH FB

/ 2's COMPLEMENT ADD * + 5 \
_ £ B +

\ *+0 /
-BACK TO THE BEGINNING. A RATHER COMPLICATED WAY OF CLEARING
THE CARRY.
MOST OF THE NON-BRANCH INSTRUCTIONS Wl LL CHANGE SOME OF THESE 4
TESTABLE FLAGS, USUALLY THE N & Z FLAGS SINCE THEY CONSTANTLY
MONITOR THE STATUS OF OPERANDS SO BRANCHES Wl LL APPEAR RATHER
FREQUENTLY IN PROGRAMS.

4.2 INDEXING
IF YOU WISHED TO CLEAR (SET EACH BYTE TO 0) A PATCH OF MEMORY, e.g.
THE MEMORY USED TO STORE THE DATA WHICH IS TO BE OUTPUT TO THE
DISPLAYS, WHICH IS FROM 0010 TO 0017, YOU MIGHT THINK

LDA# 00 LOAD ACCUMULATOR IMMEDIATE WITH 00
STAZ10 STORE ACCUMULATOR IN ADDRESS 0010
STA Z 11 STORE ACCUMULATOR IN ADDRESS 0011
STA 2 12 STORE ACCUMULATOR IN ADDRESS 0012

STA 2 17 STORE ACCUMULATOR IN ADDRESS 0017
IS NECESSARY. THIS LOOKS SUFFICIENTLY REGULAR THAT THE COMPUTER
SHOULD BE ABLE TO DOT IT. THIS IS WHERE THE INDEX REGISTERS
REAPPEAR. WE CAN STORE THE ACCUMULATOR INDEXED BY EITHER INDEX
REGISTER

STAZ,X 95 "STORE A INDEXED BY X IN ZERO
PAGE"

STAZ,X 10

THE OFFSET CALCULATOR CALCULATES THE OFFSET TO BE ENTERED AS
THE SECOND BYTE OF A BRANCH INSTRUCTION. IT WILL PROMPT WITH
XX0000XX AND YOU SHOULD ENTER THE ADDRESS OF THE BRANCH
INSTRUCTION. AFTER A CONTROL KEY IT WILL PROMPT AGAIN WITH
XX1111XX AND YOU SHOULD ENTER THE ADDRESS YOU WISH TO BRANCH
TO. THE REPLY WILL BE EITHER "OFFSET XX" WHERE XX IS THE VALUE TO
BE ENTERED, OR "TOO FAR" IF THAT IS THE CASE. A CONTROL KEY
RESTARTS THE SEQUENCE.

OFFSET CALCULATOR NOT RELOCATABLE
ADDR

0200
0201
0203
0205
0207
0209
020B
020E
0210
0212
0214
0216
0219

021B
021D
021 F
0221
0223
0224
0226
0228
0229
022B
022D
022F
0231
0232
0235

0236

0239
023C
023E

0241
0244
0246
0248
024A
024D
024E
0250
0251
0254
0257

HE>
CODE
D8
A9
85
84
84
A2
20
A9
85
85
A2
20
A5

E9
85
B0
C6
38
A5
E5
AA
A5
E5
D0
A9
20
8A
49

20

4C
A9
20

4C
85
A0
B1
99
88
10
60
5C
ED
78

02
21
22
23
22
88
11
24
25
24
88
22

7E
22
03
23

24
22

25
23
0E
51
44

80

60

04
57
44

01
20
07
20
10

F8

71
79
5C

LABEL

AGAIN

FE

FE

HSUB

02

FE

FF
TOOFAR

02

02
MESSAGE

LOOP
00

71
78
5C

INSTRUCTION

CLD
LDA #02
STAMESSH
STY FROMH
STY FROML
LDX#FROML
JSR QDATFET
LDA #11
STA TO L
STA TOH
LDX #TOL
JSR QDATFET
LDAFROML

SBC #7E
STA FROML
BCS HSUB
DECFROMH
SEC
LDATOL
SBCFROML
TAX
LDA TOH
SBC FROMH
BNETOOFAR
LDA #51
JSR MESSAGE
TXA
EOR #80

JSR RDHEXTD

JMP RESTART
LDA #57
JSR MESSAGE

JMP AGAIN
STA M ESS L
LDY #07
LDA (MESSL),Y
STA D, Y
DEY
BPL LOOP
RTS

COMMENTS

- INITIALIZE MESSAGE POINTER
- SET UP PROMPT

- FETCH FIRST ADDRESS
- SET UP 2ND PROMPT

- FETCH SECOND ADDRESS
- OFFSET TO MAKE OVERLENGTH

C A OS/

LASY
- CARRY KNOWN SET BY QDATFET

- DONTSETTHE CARRY AGAIN!

- CALCULATE THE LENGTH

- PRINTOUT

- COMPLEMENT TOP BIT BECAUSE OF
THE OFFSET APPLIED

- PRINTOUT ANSWER, OVER
WRITING THE

- FINISHED
- WHOOPS
- TELL THE PROGRAMMER THAT IT'S

WRONG
- AND GET IT DONE AGAIN
- MESSAGE DESCRIBED BY A
- EIGHT BYTES OF DATA TO DISPLAY
- FETCH THEM

- THE DATA

THE HEXADECIMAL TO DECIMAL CONVERTER PROMPTS WITH XX0000XX
AND AFTER A CONTROL KEY IS PRESSED WILL PROVIDE AN ANSWER IN THE
FORM ????????, AFTER A WAIT!
THE PROGRAM WORKS BY DECREMENTING THE HEX. NUMBER AND
INCREMENTING THE DECIMAL NUMBER UNTILTHE HEX. NUMBER REACHES
ZERO.
THIS PROGRAM, LIKE THE DECIMAL TO HEX. CONVERTER, WHICH USES
VIRTUALLY THE SAME METHOD, ILLUSTRATES THE USE OF THE
DECIMAL MODE, AN IMPORTANT FACET OF THIS PROCESSOR.
THEY ALSO PROVIDE AN EXCELLENT DEMONSTRATION OF THE TRADEOFF
FREQUENTLY FOUND BETWEEN PROGRAM LENGTH AND SIMPLICITY, AND
PROGRAM EXECUTION TIME. THE METHOD USED IS BOTH SHORT AND SIMPLE,
BUT CAN TAKE UP TO THREE SECONDS FOR SOME CALCULATIONS. A MUCH
LONGER AND MORE COMPLEX (RELATIVELY) PROGRAM COULD HAVE BEEN
WRITTEN BASED ON ABCD = A(16*16*16)+B(16*16)+C(16)+D AND WOULD HAVE
BEEN VIRTUALLY INSTANTANEOUS.

HEX-*

ADDR

0200
0202
0204
0206
0209
020A
020C
020E
0210
0212
0214
0216
0218
021A
021B
021C
021E
021F
0220
0222
0223
0225
0227
0229
022B
022D
022F
0232
0233
0235
0238
023A

•DEC

HEX
CODE
84
84
A2
20
F8
A2
86
A5
D0
A5
F0
C6
C6
18
98
69
A8
8A
69
AA
90
E6
B0
84
86
A2
20
88
A5
20
4C

20
21
20
88

00
22
20
06
21
13
21
20

01

00

E9
22
E5
20
21
20
64

22
7A
04

LABEL

FE

DECRHEX

NODEC

DEAD

FE

FE
FF

INSTRUCTION

STYZ HEXL
STY Z HEXH
LDX#HEXL
JSR QDATFET
SED
LDX #00
STX Z DECOUT
LDAZ HEXL
BNE NODEL
LDA2 HEXH
BEQDEAD
DECZ HEXH
DECZ HEXL
CLC >
TYA
ADC #01
TAY
TXA
ADC #00
TAX
BCC DECRHEX
INC 2 DECOUT
BCSDECRHEX >
STYZ HEXL
STX Z HEXH
LDX #HEXL
JSR QHEXTD1
DEY
LDAZ DECOUT
JSR HEXTD
JMP RESTART

COMMENTS

- SET UP ZERO PROMPT
—

- AND FETCH THE DATA
- DECIMAL MODE
- SETX & Y & DECOUT TO ZERO

- TEST FOR ZERO,THENDECREMEh

- IFHEXNO.ISZERO,THENFINISHE

ADD 1 TO THE DECIMAL NUMBER
' USING X & Y AS TWO BYTE

ACCUMULATOR

- FINISHED,SO STORE X & Y

- DISPLAY 4 DIGITS

- DISPLAY 5 DIGIT

10

X =07, SAY

000F
0010
0011
0012
0013
0014
0015
0016
0017

A IS STORED IN 17 WHICH IS 10 THE "BASE ADDRESS"+07 THE "INDEX"

IF WE DO
A2 07 LDX # 07
95 10 STAZ,X10
THE STORE IS TO LOCATION 17 (=10 + X). THE ADDITION IS STRAIGHT-
FORWARD BINARY,TRUNCATEDTOA LOCATION IN ZERO PAGE SO

LDX# FF
STAZ,X 10

STORES IN LOCATION 0F
WE ALSO HAVE

"STORE A INDEXED BY X"
"STORE A INDEXED BY Y"

9D
99

STA, X
STA, Y

(BUT NO STA Z, Y) WHICH DO NOT NEED TO TRUNCATE THE ADDITION
THEY EXPECT A TWO BYTE ADDRESS SO

LDX# FF
STA, X 0010

STORES IN LOCATION 010F
NOW

DEX CA "DECREMENT (IN HEX) X BY ONE"
SETS THEZ FLAG IF X IS ZERO, & THE N FLAG EQUAL TO BIT 7 OF X.

BPL 10 "BRANCH IF PLUS"
TAKES THE BRANCH IF THEN FLAG IS CLEAR I.E. IS SAYING'NOT NEGATIVE'
I.E. PLUS. IT'S EASY TO SE'E THAT THE COMBINATION

DEX
BPL FD

DECREMENTS X ONCE, AND, IF THE RESULT WAS POSITIVE (I.E. IN THE
RANGE 0 - 7 F) IT TAKES THE BRANCH AND DECREMENTS X AGAIN AND
AGAIN UNTIL IT REACHES A NON-POSITIVE NUMBER, WHICH Wl LL BE FF,
WHEN IT DOESN'T TAKE THE BRANCH. IF WE START AT 7 AND EACH TIME
AROUND THE LOOP CLEAR THE RELEVANT DISPLAY:
CODE LABEL MNEMONICS
A9 00 LDA#00
A2 07 LDX #07
95 10 LOOP: STA Z, X 10——i

CA
10 FB

DEX
BPL LOOP

COMMENT
LOAD ACCUMULATOR IMMEDIATE
LOADX IMMEDIATE
STORE-* IN ZERO PAGE INDEXED
BYX *
DECREMENT X BY ONE
BRANCH IF PLUS TO "LOOP"

SO WE CAN WRITE A VERY SHORT PROGRAM TO CLEAR THE DISPLAY. BY
MAKING THE LOOP SLIGHTLY LARGER (WITH THE SAME LENGTH OF
PROGRAM)
0060 A2 07 LDX #07
0062 B5 48 LOOP: LDA Z, X 48
0064 95 10 STAZ,X10
0066 CA DEX
0067 10 F9 BPLLOOP
0069 4C 04 FF JMP FF04
WE CAN, INSTEAD OF CLEARING THE DISPLAY, CAUSE A BLOCK OF MEMORY,
0048 - 004F, TO BE TRANSFERRED TO THE DISPLAY. THE PROGRAM IS
POSITION INDEPENDENT SO YOU CAN WRITE IT INTO MEMORY ANYWHERE. . .
EXCEPT LOCATIONS 0010-0017. IF YOU PUT THE PROGRAM IN 0048 IT
Wl LL FUNCTION PERFECTLY BUT YOU WON'T BE ABLE TO CHANGE THE DATA
WHICH IS MOVED, SINCE THIS IS THE PROGRAM. YOU CAN TRY THE PROGRAM
USING THIS DATA
0048 00 77 58 5C 50 54 00 00
OR YOU COULD CONSTRUCT YOUR OWN DATA, USING APPENDIX A.
THE INDEXING MECHANISM SHOWN ABOVE IS ONLY CAPABLE OF DEALING
WITH 256 (CONSECUTIVE) BYTES, STARTING AT A GIVEN ADDRESS. THUS
A9 00 LDA # 0 0 LOAD A IMMEDIATE WITH "00"
A8 TAY TRANSFER A TOY
18 LOOP:CLC CLEAR CARRY
79 00 FE ADC, Y FE00 ADD WITH CARRY INDEXED BY Y
C8 INY INCREMENTY
D0F9 BNE LOOP BRANCH IF NOT EQUAL
20 60FE JSR FE60 JUMP SUBROUTINE
4C04FF JMPFF04 JUMP
COMPUTES THE LOWEST BYTE OF THE 256 BYTE ADDITION. (NOTE THAT,
SINCE Y IS ZERO WHEN YOU LEAVE THE MONITOR BY THE GO FUNCTION,
THE INITIALISATION OF A & Y CAN BE ACCOMPLISHED BY TYA INSTEAD OF
LDA #00, TAY) HOW COULD THIS BE DONE FOR ALL 65536 MEMORY BYTES?
CLEARLY IT IS POSSIBLE TO HAVE AN ADC, Y FOR EACH PAGE:
98 TYA
18 LOOP: CLC
79 0000 ADC, Y 0000
18
79 00FF

18
79 00FF
C8
F0 03
4C??
20 60 FE END
4C04FF

CLC
ADC, Y 0100

CLC
ADC,YFF00

CLC
> 256 ADC, Y INSTRUCTION PAIRS

INY
BEQEND
JMP LOOP
JSR FE60
JMP FF04

IN ORDER TO SHORTEN THIS PROGRAM WE WILL INTRODUCE THBCONCEPT
OF "INDIRECTION".

ADDR

0240
0242
0245
0247

HEX
CODE

A2 24
20 66
4C 04

LABEL

FE
FF

INSTRUCTION

LDX #24
JSR QHEXTD2
JMP RESTART

COMMENTS

- SET UP X
- PUT NEXT 4 OUT
- DISPLAY RESULT

SYSTEM
THE DECIMAL TO HEX CONVERTER WILL PROMPT WITH 0XXXX FOR THE
FIRST DIGIT OF THE 5 DIGIT DECIMAL NUMBER. THEN X0000. FOR THE LAST
FOUR DIGITS OF THE DECIMAL NUMBER. CLEARLY ANYTHING OVER 65535
Wl LL GIVE THE REMAINDER WHEN DIVIDED BY 10000 HEX. TO ENTER THIS
NUMBER YOU WOULD KEY 6, CONTROL KEY, 5535, CONTROL KEY, AND FFFF
WILL APPEAR ON THE DISPLAY (AFTER A SLIGHT DELAY!)
THE PROGRAM WORKS BY A PROCESS OF DECREMENTING THE DECIMAL
NUMBER AND THEN INCREMENTING THE HEX. NUMBER.

DEO*HEX

0200
0201
0203
0205
0207
0209
020C
020F
0211
0214
0215
0217
0219
021A
021C
021E
0220
0221
0222

0224
0225
0226
0228
0229
022B

022D
022F
0231
0233
0235
0236

0238
023A
023D
023F

98
85
85
A2
85
20
20
90
20
F8
84
A6
98
85
A4
85
38
98
E9

A8
8A
E9
AA
B0
C6

30
E6
D0
E6
38
B0

A2
20
4C

20
21
20
22
7A
0C
F6
88

10
21

21
20
20

01

00

04
22

09
20
ED
21

E9

20
64
04

AGAIN
FE
FE

FE

NEXT
ALSO

NODEC

RESULT
FE
FF

TYA
STAZDECL
STA Z DECH
LDX #DECC
STAZDECVH "]
JSR HEXTD I
JSR DISPLAY
BCC AGAIN J
JSR QDATFET
SED
STYZD
LDXZ DECH
T Y A
STA 2 DECH
LDYZ DECL
STAZ DECL
SEC N
T Y A
SBC #01

TAY
T X A
SBC #00
TAX y

BCS NODEC
DECZDECVH

BMI RESULT
INC2DECL
BNENEXT
INC 2 DECH
SEC

- CLEAR A
- CLEAR NO

y -FETCH THE FIRST DIGIT

- AND THEN THE LAST FOUR DIGITS
- DECIMAL MODE
- CLEAR LEFT DISPLAY
- X & Y AS DOUBLE ACCUMULATOR

- CLEAR AREA FOR RESULT

> - DO A DECIMAL SUBTRACT, DOUBLE
BYTE

- LAST OF THE DECIMAL SUBTRACT,
TO DO 5 DIGITS

- IF MINUS THEN FINISHED
- DOUBLE HEX INCREMENT

- CREATE BRANCH ALWAYS, BUT
BCS ALSO f DON'T BOTHER TO SET THE CARRY

LDX #20
JSR QHEXTD
JMP RESTART

TWICE

- DISPLAY RESULT

ADDR

0208
020A
020D
020E
0210

0212
0214
0215

0217
0218
0219
0213
021 D
021F
0222
0224

HEX
CODE
A2
20
98
A0
66

90
18
65

6A
88
D0
85
66
20
20

20
88

08
20

03

21

F5
21
20
64
64

DOUBLE BYTE

ADDR

0200
0201
0203
0205
0207
0209
020B
020D
0210
0212
0215
0277
0219
021B
021D
021F
0221
0222
0224
0226
0228
022A
022C
022E
0230
0232
0233
0235
0237
0239
023B

HEX
CODE
D8
84
84
A9
85
85
A2
20
A2
20
84
84
A0
66
66
90
18
A5
65
85
A5
65
85
66
66
88
D0
66
66
A0
20

20
21
11
22
23
20
88
22
88
24
25
10
23
22
0D

20
24
24
21
25
25
25
24

E6
23
22
06
66

LABEL

FE

LOOP

NAD

FE
FF

MULTIPLY

LABEL

1
r
'

FE

FE

LOOP

NAD

FE

INSTRUCTION

LDX #20
JSR QDATFET
TYA
LDY #08
ROR £20

BCCNAD
CLC
ADC 2 21

ROR A
DEY
BNE LOOP
STA 2 21
ROR 2 20
JSR QHEXTD
JMP RESTART

INSTRUCTION

CLD
STY 2 20 MPIER
STY-2 21
LDA #11
STA 2 22 MPICAND
STA 2 23
LDX #20
JSR QDATFET
LDX #22
JSR QDATFET
STY 2 24
STY 2 25
LDY #10
ROR 2 23
ROR 2 22
BCCNAD
CLC
LDA 2 20
ADC 2 24
STA 2 24
LDA 2 21
ADC 2 25
STA 2 25
ROR 2 25
ROR 2 24
DEY
BNE LOOP
ROR 2 23
ROR 2 22
LDY #06
JSR QHEXTD2

COMMENTS

- FETCH THE NUMBERS
- CLEARS A
- LOOP COUNTER
- SHIFT MULIPLIER (AND HIGH BYTE

OF RESULT)
- NO ADD IF NO BIT

- ADD MULTIPLICAND INTO LOW
BYTE OF RESULT

- AND SHIFT LOW BYTE OF RESULT

- PUT IN LOW BYTE
- FINAL JUSTIFICATION SHIFT
- DISPLAY ANSWER

COMMENTS

- BINARY ONLY
- FORM PROMPT FOR THE ZERO

INPUT

- FORM PROMPT FOR THE FIRST
INPUT

- FETCH ZERO INPUT

- AND FIRST INPUT
- CLEAR WORKING SPACE

- LOOP COUNT INITIALISATION
- TWO BYTE SHIFT RIGHT

- NO ADD IF THE O/P BIT ISN'T A ONE

- TWO BYTE ADD

- NO CARRY OUT OF THE ADD
- SHIFT AGAIN

- GO ROUND LOOP 16 TIMES
- FINAL SHIFT ON RESULT

- SET UP POSITION
- X ALREADY POINTING AT

023E A0 02 LDY #02

CORRECT LOCATIONS-PUT 4 HEX
OUT
NEXT POSITION

4.3.INDIRECTIOIM:
YOU'LL NOTICE THAT THE PROGRAM IS NOT POSITION INDEPENDENT: THE
ADDRESS OF THE CLC INSTRUCTION MUST BE WRITTEN INTO THE PROGRAM.
THIS IS ANOTHER DISADVANTAGE OF THIS METHOD: (THERE IS AN
ADVANTAGE: THIS PROGRAM IS VERY FAST, TAKING ONLY 6JUS PER BYTE).
THE INSTRUCTION REQUIRED MUST HAVE A 16 BIT UNFIXED ADDRESS AND
THIS CAN ONLY GO IN ONE PLACE : MEMORY. A LIMITATION IS THAT
GENERALLY IT CAN ONLY BE IN ZERO PAGE MEMORY. THE CONCEPT IS
KNOWN AS INDIRECTION. THE MOST DIRECT VERSION OF THIS IS THE
INDIRECTJUMP.
6C02 00 JMP (0002)
THIS IS THE ONE VERSION OF INDIRECTION THAT DOESN'T NEED TO REFER
TO ZERO PAGE MEMORY. WHAT HAPPENS IS THIS:

DATA
6C
02

BUS R/W
1
1

TIMERS ADDRESS BUS
0 PC
1 PC+1
2 PC+2 00 1
3 0002 V 1
4 0003 U 1
5 UV OPCODE 1

THE MONITOR USES A JUMP INDIRECT FOR THE GO FUNCTION, HAVING
BUI LT THE ADDRESS IN 0002 & 0003 : A JUMP INDIRECT VIA 0002 & 0003,
ASSUMING THAT THESE LOCATIONS HAVEN'T BEEN ALTERED, WILL THUS
RETURN TO THE START OF THE PROGRAM -WITHOUT KNOWING WHERE
IT HAD BEEN ENTERED INTO MEMORY AT THE TIME OF WRITING.
INDIRECTJUMP

JUMP INDIRECT

LOWER BYTE
HIGHER BYTE
OLD 6C COMPLETED

MAIN

JMP

PROGRAM

(0002)

ZERO PAGE

12
34 ':

0002
0003

4
ROUTINE

XX
XX
XX

1234
1235
1236

WELL, THAT WAS SIMPLE INDIRECTION. NOW WE'LL MOVE ONTO THE MORE
COMPLICATED MODES OF INDIRECTION. HAVING FETCHED THE ADDRESS
OUT OF MEMORY WITH THE INDIRECTION STAGE, WE CAN INDEX IT. THIS IS
CALLED POST-INDEXED INDIRECTION. WITH THE 65XX SERIES OF MICRO-
PROCESSORS YOU MAY ONLY

I INDEX IN THIS MODE WITH THE Y INDEX REGISTER
II USE ZERO PAGE MEMORY

LDA(I),Y

(AN EXTRAMS IS NEEDED IF J+Y
RESULTS IN A CARRY)

TIMERS ADDRESS BUS DATA BUS R/W
0 PC B1 1
1 PC+1 I 1
2 001 J 1
3 001+1 K 1
4 KJ+Y DATA 1
5 PC+2 OPCODE 1

THIS IS THE MODE OF ADDRESSING NEEDED TO SOLVE THE 65536 BYTE
ADDITION PROBLEM. MEANWHILE WHAT ABOUT THE X REGISTER AND
INDIRECTION? HERE WE HAVE PRE-INDEXED INDIRECTION
T I M E R S ADDRESS BUS DATA BUS R/W

LDA (I,X)

NO CARRY TO HIGH ORDER BYTE

PUT I N A

THIS IS THE OPPOSITE TO POST-INDEXED ... HERE THE INDEXING SWITCHES
BETWEEN DIFFERENT INDIRECTION LOCATIONS. THE EFFECTS OF THESE
TWO INDEXING MODES ARE ONLY THE SAME IN THE TRIVIAL CASE OF ZERO
INDEXES. HERE IS THE SOLUTION TO THE 65536 BYTE ADDITION:

0
1
2

3
4

CJ
I

6

PC
PC+1
001

00I+X
00I+X+1
KJ
PC+2

A1 1
1 1
DATA, 1
DISCARDED
J 1
K 1
DATA 1
OPCODE 1

98
85 20
85 21
18 LOOP
71 20
C8
D0FA
E6 21
D0F6
2060 FE
4C04FF

TYA
STA Z 20
STA Z 21
CLC
ADC (20), Y
INY
BNE LOOP
INC Z 21
BNE LOOP
JSR FE60
JMP FF04

-ZERO Y & A

? SETUP INDIR

THE PROGRAM IS, ONCE AGAIN, POSITION INDEPENDENT. IT IS, AS IMPLIED IN
THE FIRST SOLUTION, SLOW : 12;uS PER BYTE. THIS IS MAINLY DUE TO THE
SMALL SIZE OF THE LOOP : THE 3jLtS 'NEARLY ALWAYS TAKEN' BRANCH IS
TAKING A DISPROPORTIONATE AMOUNT OF TIME, IN THE FIRST SOLUTION
THE EQUIVALENT 5/xS BRANCH AND JUMP COMBINATION OCCURS ONLY
EVERY 256 BYTES AND IS THUS IGNORED IN THE TIME CALCULATIONS.
THE INSTRUCTION INC Z 21 HAS AN OBVIOUS FUNCTION : INCREMENT (IN
HEXADECIMAL) LOCATION 0021. IT ACTS JUST LIKE INX OR I N Y - B U T IT
TAKES 5MS INSTEAD OF 2/xS.

4.4 READ-MODIFY WRITE INSTRUCTIONS
THERE ARE COMPANION INSTRUCTIONS TO INC Z THAT CAN DIRECTLY
ALTER MEMORY CONTENTS, THESE ARE CALLED READ-MODIFY-WRITE
INSTRUCTIONSJHENEXTOF WHICH IS THE OBVIOUS DEC INSTRUCTION.

ADDR

0217

0219
021B
021C
021D
021F
0220
0221
0223
0224
0226
0228
022A
022C
022 E
0230
0232
0234
0236
0238
023B
023D
0240
0242

HEX LABEL
CODE
A4

A6
38
98
E5
A8
8A
E9
AA
90
84
A5
69
85
A5
69
85
90
A2
20
A5
20
4C

20

21

22

00

10
23
24
00
24
25

00
25
E5
24 RESULT
64 FE
23
60 FE
04 FF

INSTRUCTION COMMENTS

LDY £ 20 - USE Y & X AS DOUBLE
ACCUMULATOR

LDXZ21
SUB SEC >

T Y A
SBC 2 22
TAY
T X A
SBC #00

> - SUBTRACT THE DIVISOR

TAX)
BCC RESULT - IF NEGATIVE THEN FINISHED
STY Z 23 - ELSE UPDATE THE REMAINDER
LDA Z 24
ADC #00
STA Z 24
LDA 2 25
ADC #00
STA Z 25 J

> - AND ADD ONE TO THE RESULT
(CARRY WAS SET ON INPUT).

BCC SUB - NO CARRY IS POSSIBLE (USUALLY)
LDX #24
JSR QHEXTDI - DISPLAY RESULT
LDA 2 23
JSR RDHEXTD - AND REMAINDER
JMP RESTART

THE TWO MULTIPLY ROUTINES ARE FOR SINGLE AND DOUBLE BYTE BINARY
MULTIPLICATION. THE FIRST PROMPTS XX0011XX AND THE TWO NUMBERS
TO BE MULTIPLIED SHOULD BE ENTERED SEQUENTIALLY. (E.G. 1234WOULD
GIVE 12X34). THE SECOND PROMPTS XX0000XX FOLLOWED BYXX1111XX
FOR THE TWO NUMBERS. ANSWERS ARE, AS USUAL, DISPLAYED AFTER A
CONTROL KEY HAS BEEN PRESSED.
BOTH ARE BASED ON AN EQUIVALENT TO THE NORMAL METHOD OF LONG
MULTIPLICATION.
E.G. 11010

00110
0000000000
000000000

1101000
110100

-(0X2 4) X 11010
-(0X2 3) X 11010
-(1X2 2

-(1X2)
-(0X2°)

X 11010
X 11010
X 11010

10011100

SINGLE BYTE MULTIPLY

ADDR

0200
0202

0204
0206

HEX
CODE
D8
84

A9
85

20

11
21

LABEL INSTRUCTION

CLD

STY 2 20

LDA #11
STA 2 21

COMMENTS

- SET UP PROMPT FOR ZERO-
MULTIPLIER

- PROMPT FOR FIRST- MUIT

ADDR

020F
0211

0213
0215
0216
0217
0219
021A
021B
021D
021 E
0220

0222
0224
0226
0228
022A
022C
022E
0230
0232

0234
0236
0239
024B

HEX : LABEL
CODE
84
A4

A6
38
98
E5
A8
8A
E5
AA
90
A9

65
85
A5
69
85
A5
69
85
90

A5
20
4C

23
20

21
NXTSUB

23

24

14
00

22
22
23
02
23
24
00
24
E1

22 RESULT
60 FE
04 FF

INSTRUCTION

STY2SUBL
LDYZSQL

LDXZSQH
SEC 1̂
TYA
SBCZSUBL I
TAY >
TXA
SBC2SUBH
TAX '
BCC RESULT
LDA#00

ADCZ ROOT
STA Z ROOT
LDAESUBL
ADC #02
STA2SUBL
LDAZSUBH
ADC #00
STA2SUBH
BCC NXTSUB

LDA 2 ROOT
JSR DHEXTD
JMP RESTART

COMMENTS

- SUBTRACT 0001 AT START
- USE Y & X AS DOUBLE SIZED

ACCUMULATOR

- SUBTRACT SUB FROM X & Y

- IF NEGATIVE THEN STOP
- NOT FINISHED YET. INCREMENT

ROOT

- INCREMENT SUB

- THERE CAN BE NO CARRY:
BRANCH ALWAYS

- DISPLAY ANSWER

THE DIVIDE ROUTINE WILL CALCULATE THE INTEGER RESULT AND
REMAINDER OF A FOUR DIGIT NUMBER DIVIDED BY A TWO DIGIT NUMBER.
BY ENTERING CLD (FOR HEX.) OR SED (FOR DECIMAL) EITHER BASE MAY BE
USED, SINCE IT WORKS BY SUBTRACTING THE DIVISOR SUCCESSIVELY FROM
THE DIVIDEND. THE ROUTINE PROMPTS WITH XX0000XX FOR THE DIVIDEND
AND THEN XXXX11XX FOR THE DIVISOR. THE ANSWER WILL APPEAR IN
THE FORM ABCD.EF WHERE ABCD IS THE INTEGER RESULT AND EF IS THE
REMAINDER.

DIVIDER
ADDR

0200
0201
0203
0205
0207
0209
020B
020E
0210
0213
0215

HEX
CODE
D8
84
84
A9
85
A2
20
A2
20
84
84

OR
20
21
11

22
20
88
22
88
24
25

LABEL

F8

FE

FE

INSTRUCTION

CLD OR SED
STY 2 20 DIVIDED
STY 2 21
LDA #11
STA 2 22 DIVISOR
LDX #20
JSR QDATFET
LDX #22
JSR QDATFET
STY 2 24 RESULT
STY 2 25

COMMENTS

- BINARY (DECIMAL) OPERATION
- CLEAR DIVIDEND - PROMPT FOR

NUMBER
- PROMPT FOR SECOND NUMBER

- FETCH DIVIDEND

- FETCH DIVISOR
- CLEAR RESULT

THE OTHER FOUR ARE NEW,
AS AN EXAMPLE
0070 A9 55

72 0A
73 20 60FE
76 4C04FF

THEY ARE SHIFTS AND ROTATES. LET'S USE ASL

LDA #55
AS LA
JSR FE60
JMP FF04

LOAD A IMMEDIATE WITH 55
ARITHMETIC SHIFT LEFT
JUMP TO SUBROUTINE
JUMP

THE RESULT OF RUNNING THIS PROGRAM IS AA ON THE DISPLAY. EACH BIT
IN THE ACCUMULATOR HAS BEEN SHIFTED ONE BIT LEFT.

BEFORE
AFTER

01010101
10101010 0

ROLA, ROTATE LEFT ACCUMULATOR, (2A) WILL HAVE THE SAME EFFECT,
EXCEPT THAT THE RIGHT INPUT 0 IS REPLACED BY C, IN THIS CASE 1,SO
THE RESULT IS AB.
LSRA,LOGICAL SHIFT RIGHT ACCUMULATOR (4A)

C
BEFORE ffl 01010101

10101010AFTER LL|
RORA, ROTATE RIGHT ACCUMULATOR (6A) WILL REPLACE THE LEFT INPUT 0
WITH C TO GIVE AA
ALL THESE INSTRUCTIONS MAY BE USED DIRECTLY ON MEMORY LIKE INCZ.
4.5 MISCELLANEOUS REMAINING INSTRUCTIONS
THERE ARE A FEW INSTRUCTIONS LEFT,WHICH WILL HAVE TO BE DEALT
WITH PIECE-MEAL:
BRK00 :THE MICROPROCESSOR HAS TWO INTERRUPTS, AS EXPLAINED IN

THE HARDWARE SECTION, AND THE INSTRUCTION SIMULATES AN
JRQ, FIRST SETTING THE B FLAG IN THE STATUS REGISTER. THE
RETURN AFTER A BREAK WILL BE AT THE NEXT BUT ONE BYTE
: A COMBINATION OF TWO INSTRUCTIONS

I READ MEMORY BITS 6 & 7 INTO THE OVERFLOW &
NEGATIVE FLAGS

II LOGICAL AND ACCUMULATOR AND MEMORY, A ZERO
RESULT SETTING THE Z FLAG. THE RESULT IS NOT
LOADED INTO THE ACCUMULATOR. THE INSTRUCTION
IS USUALLY USED TO TEST THE STATUS OF
PERIPHERAL DEVICES, WITHOUT UPSETTING A,X OR Y.

RTI, RTS 40,60 BOTH INSTRUCTIONS PULL THE PROGRAM COUNTER FROM
* THE STACK, RTI FIRST PULLS THE PROCESSOR STATUS
1 FROM THE STACK.

BIT2C

CHAPTER 5: ACORN HARDWARE
5.1 CHIP LAYOUT AND BUS
BEFORE PLUNGING DEEPER INTO SOFTWARE WE'LL TAKE A REST AND LOOK
AT THE HARDWARE. WE'LL START WITH THE CPU BOARD

CO

CO

(N
DO

00

CO

CM

LL)
00

•
00
Q
Q

Q

o

CD
CO
r—

C/)
_ l

CN
O

DO

<
X

a
DC

aavoaA3>il UJ
CO

ROUTINES BY ENTERING THE SECTION OF PROGRAM FROM THE TITLE LABEL
(E.G. DIVIDE) TO THE RESULT LABEL AND SUBSTITUTING THE LINE

60 RESULT RTS .
ALL ARE RELOCATABLE.

SYSTEM PROGRAMS
THESE PROGRAMS ARE ALL SHORT ROUTINES WHICH CAN PROVE USEFUL
TIME SAVERS AT THE DEVELOPMENT AND INPUT STAGES OF PROGRAM
WRITING.
IT MAY BE FOUND USEFUL TO KEEP COPIES OF THEM ON TAPE AND TO HAVE
THEM IN THE ACORN AND BESIDE YOU WHILE DEVELOPING PROGRAMS.
BRANCH CALCULATIONS IN PARTICULAR ARE A FERTILE SOURCE OF
ERRORS AND TIME WASTING IN ANY HAND ASSEMBLED PROGRAM.
THE RELOCATOR Wl LL MOVE PROGRAMS AROUND MEMORY FOR YOU. A
GODSEND TO ANYONE WHO FINDS THEMSELVES WITH THE NEED TO
REENTER LARGE CHUNKS OF CODE MANUALLY.

MISCELLANEOUS
THIS IS A SELECTION OF PROGRAMS AND ROUTINES INCLUDED BECAUSE
THEY ARE INTERESTING, ELEGANT OR IMPORTANT. THEY SHOW SOME OF
OF THE THINGS THAT CAN BE DONE WITH THE SYSTEM, WHICH MAY BE MORE
THAN YOU IMAGINE. WE HAVE, FOR INSTANCE, RUN A CHESS GAME IN THE 1K
SYSTEM.
IN PARTICULAR THE METRONOME AND COUNTER PROGRAMS ARE INTENDED
TO DEMONSTRATE SOME OF THE USES OF THE KEYBOARD. IN ORDER TO
UNDERSTAND WHAT IS GOING ON WITH THESE PROGRAMS YOU WOULD BE
WELL ADVISED TO STUDY THE MONITOR LISTING AND PART 1 OF THIS
MANUAL.

MATHEMATICAL
THE SQUARE ROOT PROGRAM Wl LL CALCULATE EITHER DECIMAL OR HEXA-
DECIMAL SQUARE ROOTS ACCORDING AS CLD (FOR HEX) OR SED (FOR
DECIMAL) IS ENTERED AS THE FIRST LINE. IN EITHER CASE THE PROMPT
WILL BE XX0000XX . THE SQUARE SHOULD BE ENTERED, A CONTROL KEY
PRESSED AND THE ROOT WILL APPEAR ON THE DISPLAY.
THE PROGRAM IS BASED ON THE EQUALITY

((N+1)*(N+1))-(N*N)=(2*N)+1
AND SUCCESIVELY SUBTRACTS 1,3,7,9 ETC. FROM THE SQUARE. WHEN THE
RESULT OF A SUBTRACTION GOES NEGATIVE THE NUMBER OF SUBTRACTIONS
DONE TO DATE IS THE ROOT.
HEX/DEC SQ ROOT.
ADDR

0200
0201
0203
0205
0207

020A

020C
020E

HE>r

CODE
F8
84
84
A2
20

84

84
C8

OR
21
20
20
88

24

22

LABEL

D8

FE

INSTRUCTION

SED (OR CLD)
STY E SQH
STY Z SQL
LDX #SQL
JSR QDATFET

STYHSUBH

STY 2 ROOT
INY

COMMENTS RELOCATABLE

- SETDECIMAL(BINARY)OPERATING
- CLEAR SQUARE TO PROMPT

- FETCH THE NO. WHOSE ROOT IS TO
BE FOUND

- CLEAR HIGH PART OF
SUBTRACTING NO.

- CLEAR ROOT

PART 2
APPLICATION PROGRAMS

MATHEMATICAL
1. SQUARE ROOT (HEX. OR DECIMAL)
2. DIVIDE (HEX. OR DECIMAL)
3. SINGLE BYTE MULTIPLY
4. DOUBLE BYTE MULTIPLY

SYSTEM
1. DECIMAL TO HEX.
2. HEX. TO DECIMAL
3. BRANCH OFFSET CALCULATOR
4. RELOCATOR
5. TAPE USE PROGRAMS
6. SCROLL

GAMES
1. NIM
2. DUCK SHOOT

MISCELLANEOUS
1. COUNTER
2. KEYBOARD COUNTER ROUTINE
3. METRONOME
4. EIGHT QUEENS PROBLEM

GENERAL
THESE APPLICATIONS PROGRAMS ARE INTENDED TO DEMONSTRATE SOME
OF THE CAPABILITIES OF THE SYSTEM AND OF THE PROCESSOR. THEY HAVE
BEEN DESIGNED FOR CLARITY AND SIMPLICITY AND IN MANY CASES ARE
NOT OPTIMAL EITHER IN TERMS OF LENGTH OF PROGRAM OR OF EXECUTION
TIME. THEY ARE INTENDED SIMPLY TO GIVE YOU A FEEL FOR THE SYSTEM
AND SOMEWHERE TO START OFF FROM.
ALL PROGRAMS MARKED RELOCATABLE CAN BE ENTERED ANYWHERE IN
AVAILABLE MEMORY, SUBJECT TO NOT IMPINGING IN VARIABLE STORAGE
SPACE FOR EITHER THE PROGRAM OR MONITOR AND NOT USING SPACE
NEEDED BY THE STACK. (FOR STACK USAGE SEE RELEVANT SECTIONS OF
PART 1 OF THIS MANUAL.)
AS FAR AS HAS PROVED POSSIBLE THE CONVENTION OF A XX 0000 XX
PROMPT FOR THE FIRST NUMBER TO BE ENTERED AND XX 1111 XX FOR THE
SECOND HAS BEEN OBSERVED IN THESE PROGRAMS. AFTER ENTERING A
NUMBER CHECK THAT IT IS CORRECT AND THEN PRESS A CONTROL KEY
(ANY ONE Wl LL DO) TO PROGRESS THROUGH THE PROGRAM.
YOU SHOULD NOW BE READY TO TYPE IN THE PROGRAMS AND RUN THEM#

BOTH TO ASSURE YOURSELF THAT THE SYSTEM IS OPERABLE AND TO
FAMILIARISE YOURSELF WITH ITS OPERATION.
THROUGHOUT THESE NOTES X INDICATES AN UNDEFINED/UNIMPORTANT
CHARACTER.
MOST OF THE PROGRAMS WERE WRITTEN BY MARK I'ANSON, THANK YOU
MARK I.

MATHEMATICAL PROGRAMS
ALL THESE ROUTINES RESET THEMSELVES WHEN A CONTROL KEY IS PRESSED
AFTER THE NUMBER HAS BEEN OBTAINEQTHEY MAY ALL BE USED AS SUB

THE OBVIOUS IMPORTANT DEVICE HERE IS A, THE MICROPROCESSOR. THIS IS
WHERE A,X,Y,P,S,PC LIVE. FROM HERE COME THE COMMANDS TO RUN
EVERYTHING ELSE. THERE ARE TWO PRIMARY BUSSES, CONSISTING OF
PARALLEL PATHS OF BINARY DATA, THE BIGGEST BUS IS THE ADDRESS BUS.
THIS CONSISTS OF 16 LINES TO TRANSFER THE ADDRESS GENERATED BY
THE PROCESSOR TO THE ADDRESS INPUTS OF ALL OTHER SYSTEM CHIPS.
THIS BUS IS UNIDIRECTIONAL : ONLY THE PROCESSOR (IN A NORMAL
SYSTEM) GENERATES ADDRESSES, AND IT HAS 2 1 6 STATES (=65536,) THE
SECOND BUS ISTHE DATA BUS. THIS IS8 BI-DIRECTIONAL LINES, ALLOWING
A SINGLE WORD/BYTE TO BE TRANSFERRED EITHER FROM THE PROCESSOR
TO MEMORY - A W R I T E , OR FROM MEMORY TO PROCESSOR - A READ.
THE REMAINING BUS IS THE CONTROL BUS, ITS MEMBERS HAVE NO
PARTICULAR RELATIONSHIP WITH EACH OTHER, BUT THEY ARE ALL SUPER-
VISORY SIGNALS FOR THE SYSTEM. THE FIRST CONTROL SIGNAL ISTHE R/W
LINE. THIS SPECIFIES THE TYPE OF DATA TRANSFER THAT THE PROCESSOR
WISHES TO MAKE: WHEN THE R/W LINE IS HIGH (LOGIC ONE; > 2.4 V DC) THE
PROCESSOR IS READING WHEN THE R/W LINE IS LOW (LOGIC ZERO <0 .8 V DC)
THE PROCESSOR IS WRITING/THE NEXT CONTROL LINES ARE THE SYSTEM
CLOCK, WHICH CONTROLS THE TIMING OF ALL DATA TRANSFERS. THE
PROCESSOR, WITH HELP FROM 1/6 OF A TTL IC, GENERATES THE SYTEM
CLOCK AS TWO NON-OVERLAPPING SQUARE WAVES, PHASE ONE (01) & PHASE
TWO (02) w

DURING 01 THE ADDRESS BUS AND THE R/W LINE CHANGE, AT THE END OF,
OR DURING, 02 THE DATA IS TRANSFERRED. OTHER CONTROL SIGNALS ALSO
CHANGE AT TIMES SPECIFIED WITH RESPECT TO THE SYSTEM CLOCK, E.G.
THE SYNC SIGNAL : THIS GOES HIGH DURING 01 WHEN THE PROCESSOR IS
FETCHING AN INSTRUCTION,AND RETURNS LOW WITH THE TRAILING EDGE
OF 02.

5.2 RESET. INTERRUPT REQUEST AND NON-MASKABLE INTERRUPT
ANOTHER CONTROL LINE IS RESET. THIS IS GENERATED BY SUITABLE HARD-
WAREJIN THE ACORNTHE CORNER SWITCH ON THE CPU BOARD, AND THE RE-
SET SWITCH ON THE KEYBOARD,) ANDCAUSES ALL PARTS OF THE SYSTEM TO
BE RESET TO A SAFE, KNOWN STATE. IN THE PROCESSOR'S CASE RESET
INITIALIZES THE PROGRAM COUNTER TO THE CONTENTS OF ADDRESSES
FFFC AND FFFD WHICH, FOR ACORN, CONTAIN THE ADDRESS FEF3.
EXECUTION OF THE ACORN MONITOR STARTS THERE. PERIPHERAL DEVICES
SHOULD BE SET TO THEIR LEAST DANGEROUS STATE BY RESET, E.G.
REMOVE INTERRUPT CAPABILITY, SET ALL PROGRAMMABLE INPUT/OUTPUT
LINES TO INPUTS.
THE TWO PUSH BUTTONS ON THE CPU BOARD ON EITHER SIDE OF THE RESET
BUTTON ARE INTERRUPT BUTTONS. THE IDEA OF AN INTERRUPT IS TO
PULL THE PROCESSOR AWAY FROM IT'S CURRENT TASK, LET IT BRIEFLY DO
SOMETHING IMPORTANT AND THEN RETURN TO IT'S TASK AS IF NOTHING
HAD HAPPENED. THE 6502 HAS TWO DISTINCT INTERRUPT CAPABI LITIES
IRQ

WITH AN INTERRUPT REQUEST, IRQ,THE PROCESSOR HAS THE OPTION OF
IGNORING IT. AN IRQ IS ONLY GRANTED IF THE FLAG I (INTERRUPT
DISABLE) IN THE PROCESSOR STATUS REGISTER IS 0. THE PROCESSOR
THEN PUSHES PC & P & THEN SETS I TO 1. (THE STATE OF THE IRQ LINE IS
CHECKED BETWEEN INSTRUCTIONS . . . IF IT REMAINS LOW,WE DON'T
WANT ANOTHER INTERRUPT). THEN THE PROCESSOR LOADS PC FROM
LOCATIONS FFFE & FFFF AND CONTINUES. NOTE THAT AN RTI RETURNS
THE ORIGINAL P, WHICH HAD THEI FLAG 0.

NMI
WITH A NON-MASKABLE INTERRUPT, NMI, THE PROCESSOR HAS NO
OPTIONS; WHEN THE LINE HAS BEEN LOW FOR AT LEAST TWO CLOCK
CYCLES, THE PROCESSOR WILL FINISH ITS CURRENT INSTRUCTION, SAVE
ITS STATUS & PC, SETIHIGH AND FETCH A NEW PC FROM FFFA & FFFB.
TO AVOID RECOGNISING ANOTHER INTERRUPT NMI IS EDGE-SENSITIVE:
NO FURTHER INTERRUPTS ARE RECOGNISED UNTIL NMI HAS RETURNED
HIGH.SINCE NMI SETSIHIGH, IRQ Wl LL NOT SUCCEED DURING THE
NORMAL OPERATION OF AN NMI PROGRAM, BUT NMI Wl LL BE ABLE TO
TAKE CONTROL DURING EXECUTION OF AN IRQ PROGRAM; IT HAS A
HIGHER PRIORITY.

IRQ, NMI, & RESET ARE OPEN-COLLECTOR LINES ON THE CPU BOARD: MANY
INTERRUPTING/RESETTING DEVICES MAY BE CONNECTED.

RST, IRQ, NMI

+5V

DEVICE 1

DEVICE 2

FFB3

B5
B7
B9
BA
BB
BD

BF

C1
C3

C6
C7
C9

CA
CC

CD
D0
D1
D3
D6
D8
DB
DD
E0
E2

E4
FFE7

FFEA

EE
F2
F6

FFFA
FFFC
FFFE

85

86
84
68
48
85
A2

A9

85
20

BA
86
C8

84
D8

BD
38
E5
9D
85
BD
E9
9D
85
A2

20
4C

3F

66
7F
58
AD
F3
B0

0A

0B
0C

0D
0D

FF

0E
00

13

12

02

1?
02
11
03
00
03
10
13

00
07

06

6D
6F
5E
FF
FE
FF

FE

01

•i £

01

01

01

FE
FF

5B

7D
77
79

4F

07
7C
71

BREAK

or** -

FONT

NMIVEC
RSTVEC
IRQVEC

STA Z R0

STXZ R1
STY Z R2
PLA
PHA
STA Z R3
LDX #R3

LDA # FF

STAZ REPEAT
JSR QUAD

TSX
STX Z R7
INY

STY Z R6
CLD

LDA, X 0102
SEC
SBC-Z RECAL
STA, X 0102
STA Z R5
LDA, X 0103
SBC #00
STA, X 0103
STA Z R4
LDX#R7

JSR QUAD
JMP RE-ENTER

'0' ' 1 ' '2' '3'

'4' '5' '6' '7'
'8' '9' 'A' 'b'
'c' 'd ' 'E' T '
NMI
RESET
IRQ

- WHEN THE IRQ/BREAK VECTOR

POINTS HERE THEN DISPLAY
DISPLAY EVERYTHING - SAVE A

- SAVE X
- SAVE Y
- GET P OFF STACK
- PUT IT BACK FOR FUTURE USE
- STORE Q IN REGISTER 3
- SET X TO POINT AT REGISTERS

3 ^ 0 FOR QUAD
- KILL POSSIBILITY OF DISPLAY

BEING ON SINGLE SCAN

- USE QUAD TO WRITE OUT A X Y P

- GET STACK POINTER

- Y ZERO SINE QUAD ENDED WITH
DISPLAY SO THIS FORMS 01

- CLEAR DECIMAL MODE FOR BINARY
SUBTRACT - DOESN'T AFFECT
USER SINCE PIS STACKED

- GET PCL OFF STACK

- CORRECT IT BY AMOUNT IN RECAL
- PUT IT BACK ON STACK
- AND STORE IT FOR QUAD
- PCH OFF STACK
- REST OF TWO BYTE SUBTRACTION
- PUT IT BACK ON STACK
- AND STORE IT FOR QUAD
- POINT X AT THESE REGISTERS-

QUAD WILL DESTROY THEM
- QUAD WRITES OUT PC SP
- AND THE WHOLE SHEBARG STARTS

OVER AGAIN
- 7 SEGMENT FORMS OF THE HEX

DIGITS

POINT TO THE ADDED INDIRECTION
POINT TO THE RESET ENTRY POINT
POINT TO THE ADDED INDIRECTION

FF45
48
4B
4D
4F
50
51
52
53
55
57

FF5A
FF5C
FF5F

61
63

65
67

FF6A
FF6C

6E
71

FF72
FF74

76
79
7C
7E

FF80
FF82

85

87
88

FF8A
8D
8F

92
95
97

FF99

9B

20
20
B0
A1
0A
0A
0A
0A
05
81
4C
D0
6C
E0
F0
A2

86
20
A2
B5
20
CA
D0
A1

20
20
D0
F0
A2
20
95

CA
D0
20
81
8D

20
D0
F0
A1

F01

5E
0C
BC
00

00
45
03
02
04
36
08

10
88
04
05
B1

F8
06

(31
A0
F6
2A
04
DD
05

F8
DD
06
21

A0
F3
11
00

FE
FE

& T>

FF

00

FE

FE

FE
FE

FE

FE

0E

FE

'MODIFY"

N1
"GO"
N2

"STORE"

DATAS

"LOAD"
ADDRSL

DATAL

"POINT"

JSR MHEXTD
JSR DISPLAY
BCS SEARCH
LDA (00, X)
ASLA
ASLA
ASLA
ASLA
ORA 2 KEY
STA (00, X)
JMP "MODIFY"
BNE N2
JMP (GAP)
CPX #04
BEQ POINT
LDX #08

STXZ D
JSR QDATFET
LDX #04

J LDA 2,X 05
JSR PUTBYTE
DEX
BNE ADDRESS
LDA (06, X)

JSR PUTBYTE
JSR COM 16
BNE DATAS
BEQWAYOUT
LDX #04
JSR GETBYTE
STAZ,X05

DEX
BNE ADDRSL
JSR GETBYTE
STA (06, X)
STA 1PIB

JSR COM16
BNE DATAL
BEQWAYOUT
LDA (00, X)

BEQ SET

9D 85 18

9F
A1

FFA3

FFA5

A7

A9 00
F0 02
A5 18

81 00

20 5E FE

SET

OUT

FFAA 4C 04 FF WAYOUT
FFAD 6C 1C 00 NMI
FFB0 6C 1E 00 IRQ

STAZP

LDA #00
BEQ OUT
LDAZ P

STA (00, X)

JSR MHEXTD

JMP RESTART
JMP (USERNMI)
JMP (USERIRQ)

DISPLAY THE MEMORY
AND GET KEY
IF NOT HEX DO OVER
HEX SO GET OLD INFO

MOVED ALONG
AND PUT IN NEW INFO
AND PUT IT BACK
THEN KEEP DOING IT
MUST BE 4 OR 6 AS 2 IS
THE VERY SIMPLE GO
IS IT 4 OR 6?
WELL IT'S NOT 4
SO IT MUST BE 6 - X NOW POINTS
TO TAP
GIVE PROMPT
AND GET 2ND STORE INFO
LOOP COUNT
SEND ADDRESSES TO TAPE

X NEATLY ZEROED ON EXIT
DATA SEND - GET INFO FROM
MEMORY
AND SEND IT TO TAPE
SEE IF PRINTED
NO
YES

RESCUE ADDRESSES FROM TAPE
PUT THEM IN FAP & TAP, THOUGH
IT COULD BE ELSEWHERE

X NEATLY SERVED AGAIN
GET DATA FROM TAPE
AND STORE IT IN MEMORY
AND ON THE DISPLAY SO IT CAN BE
SEEN
SEE IF FINISHED
NO
YES
SET/CLEAR BREAK POINT - GET
DATA FROM ADDRESSED MEMORY
IF ZERO BREAK POINT HAS
ALREADY BEEN SET = MUST CLEAR
IT
NOT ZERO SO SAVE THE
INFORMATION
AND PUT IN A BREAK POINT

WAS SET SO GET OLD
INFORMATION BACK
INSERT BREAK POINT OR OLD
INFORMATION
NOW READ IT OUT AGAIN TO
REVEAL ROM
GO BACK & DO IT ALL OVER AGAIN
INDIRECTION ON NMI
INDIRECTION ON IRQ

TO DECIDE WHICH DEVICE CAUSED AN INTERRUPT THE PROCESSOR CHECKS
A STATUS REGISTER OF EACH DEVICE, USING THE BJT INSTRUCTION TO TEST
BIT 7 OF THE DEVICE. AFTER EXECUTING THE PROGRAM REQUIRED FORA
PARTICULAR DEVICE THE PROCESSOR RESETS THE DEVICE'S INTERRUPT
BEFORE EXECUTING ITS RTJ. IF THE INTERRUPT LINE IS STILL LOW (IRQ) OR
MAKES ANOTHER NMI THE WHOLE THING IS REPEATED. THIS PRIORITIES THE
INTERRUPTS IN SOFTWARE.

5.3 6502 INTERNAL ARCHITECTURE

REGISTERS

(4)
IRQ

(b) I (40) CONTROL
NMI RST

ADDRESS
BUS

(9)
1 -

(10)
2 -

(11)
3 -

(12)
4 -

(13)
5 -

(14)
6 -

(15)
7 "

(16)

8 - * -
(17)

9 - * -
(18)
10 - * -

(19)
11 - « -

(20)
12 - * -

(22)
13 * * -

(23)
14 - * -

(24)
15 **~

—

QQ

(25)

RDY (2)
TIED HIGH ON ACORN

•-SYNC (7)

S.O.(38)
TIED HIGH ON ACORN

CLOCK
INPUT

01 (3)
02 (39)

- • R/W (34)

0 (37)

= BYTE LINE

= 1 BIT LINE

PIN NUMBER

5.4 PROMS, EPROM, RAM, RAM I/O
THE NEXT THINGS CONNECTED TO THE CPU ARE DEVICES D. THESE ARE
PROMS: PROGRAMMABLE READ ONLY MEMORYS. EACH CONTAINS 512 X 4
BITS OF INFORMATION WHICH HAS BEEN FIXED AS HALF OF THE ACORN
MONITOR. SHORT OF CATASTROPHIC DESTRUCTION THERE IS NO WAY TO
MAKE A 'HIGH' PART OF THE MEMORY 'LOW', BUT 'LOW' PARTS CAN BE
PROGRAMMED 'HIGH' BY PASSING EXCESS CURRENT THROUGH A FUSE AND
DESTROYING IT. IN NORMAL ACORN OPERATION THESE TWO DEVICES WILL
BE ENABLED BY ANY ADDRESS IN THE RANGE F800 TO FFFF: THEY THUS
OCCUR IN THE MEMORY FOUR SEPARATE TIMES, MORE ON THIS ANON.
AKIN TO D, IS DEVICE E. THIS IS NOT PART OF THE KIT, BUT IS INTENDED
TO BE A2048X8 EPROM: ERASEABLE PROGRAMMABLE READ ONLY MEMORY.
LIKE THE PROM, THE EPROM CAN BE PROGRAMMED ALTHOUGH FUSES ARE
NOT BLOWN BUT CHARGE IS STORED ON THE GATE OF AFIELD EFFECT
TRANSISTOR (F.E.T.). THIS CHARGE CAN ONLY LEAK AWAY SLOWLY - ABOUT
TEN YEARS, UNLESS THE GATE IS EXPOSED TO ULTRA-VIOLET LIGHT WHICH
HAS ENOUGH ENERGY TO SET THE DEVICE BACK TO IT'S STANDBY STATE.
(IF YOU MAKE ONE PROGRAM MISTAKE THE WHOLE DEVICE MUST BE
ERASED TO ALLOW YOU TO CORRECT THE MISTAKE. STI LL, IT'S BETTER
THAN NOT BEING ABLE TO CORRECT A MISTAKE AS WITH THE PROM). AN
ENABLE SIGNAL IS PROVIDED BETWEEN F000 & F7FF FOR THIS DEVICE, OR
ELSE IT MAY BE PROGRAMMED WITH A LARGER MONITOR AND ENABLED BY
THE F 8 0 0 - FFFF SIGNAL SMALLER (1024 X 8 or 512 X 8) EPROMS MAY ALSO
BE FITTED IN SOCKET E, BUT THESE OLDER DEVICES USUALLY REQUIRE
ADDITIONAL POWER SUPPLIES, AND TWO MODIFICATIONS TO THE CIRCUIT
BOARD ARE REQUIRED TO ALLOW THIS.
THE LAST TYPE OF MEMORY ON THE CPU BOARD IS TYPE C. THIS IS A STATIC
READ/WRITE MEMORY: INFORMATION CAN BE CREATED AND DESTROYED
BY THE MICROPROCESSOR ITSELF, BUT ALL IS LOST WHEN THE POWER IS
REMOVED. TOGETHER WITH THE DYNAMIC VERSION, THIS TYPE OF DEVICE
HAS RECEIVED THE NAME RANDOM ACCESS MEMORY R.A.M., ALTHOUGH
THEY ARE NO MORE RANDOM THAN P.R.O.M.S. OR E.P.R.O.M.S. DEVICES C
ARE 1024X4 RAMS, TWO ARE REQUIRED LIKETHETWO PROMS TO BUILD UP
A WHOLE BYTE, AND THEY ARE ENABLED BY ADDRESSES IN THE RANGE
0000 TO 03FF. THEY THUS CONTAIN ZERO PAGE & PAGE 1, THE STACK PAGE,
AS WELL AS TWO FURTHER PAGES.
THE ENABLE SIGNALS FOR ALL I.C.S. ON THE CPU BOARD ARE PROVIDED BY
THE LOGIC I.C.'S G. THESE I.C.S. DECODE CERTAIN RANGES OF ADDRESSES
FROM THE ADDRESS BUS BY RECOGNISING A PATTERN ON HIGH ADDRESS
LINES, E.G. FOR THE SIGNALTO THE TWO RAM'S THE TOP 6 (A15-A10)
ADDRESS LINES MUST BE LOW (LOGIC ZERO).THE SIGNALS ARE ALL
BROUGHTTO THE SOCKET F, WHERE LINKS CAN BE MADE (OR A D.I.L.
HEADER USED) TO TAKE THE ENABLE SIGNALS AWAY TO THE CHOSEN
DEVICES THUS MANY DIFFERENT SYSTEM CONFIGURATIONS CAN BE USED,
FROM JUST THE TWO P.R.O.M.S AND DEVICE B1, THROUGH TO BOTH C'S, B2 &
E OR ANY COMBINATION.

DEVICES B HAVE TWO FUNCTIONS. IN THE FIRST PLACE EACH CONTAINS A
128 X 8 RAM, BRINGING THE CPU BOARD UP TO 1280 BYTES OF R.A.M.
SECONDLY EACH HAS THE FACILITIES FOR MAKING TWO WORDS OF MEMORY

EA
ED
EE
EF

FEF1

FEF3
F5
F6
F9

FEFB

FD

FF
FF01

FF02

FF04

FF07
FF09

0B
0D

0F
11
13
15

FF17
19
1B
1D

FF1E
20
22
24

FF26
28
2A

FF2C
FF2E

31

FF34
36

38
FF39

3A
3C
3E

41

43

0E
6A
88
D0
F0

A2

86
A0

A2

94
CA

D0

20

90
29

C9
90

F0
C9
F0
B0
A5
A6
A4
40

F6
D0
F6
B0

B5
D0
D6
D6
20
4C

84
84

0A
AA

49
85
20

E0

B0

20

F6
DA

FF

23
0E
80

09

0E

FB

0C

F2
07

04
25

6F
06
09
0F
0A
0B
0C

00
0C
01
08

00
02
01
00
64
45

16
17

F7
10
88

02

15

0E

0E

FE

F'F'

FE

RESET

INIT

RO^J>

RESTART

RE-ENTER
SEARCH

"RETURN"

"UP"

"DOWN"

NODEC
ENTERM

FETADD

ASL 1PIA
ROR A
DEY
BNE INPUT
BEQ WAIT

LDX #FF
TXS
STX 1BDDR
STX Z REPEAT
LDY #80

LDX #09

STYZ,X REPEAT
DEX

BNE ROUND

JSR DISPLAY

BCC INIT
AND #07

CMP #04
BCC FETADD

BEQ LOAD
CMP #06
BEQ "UP"
BCS "DOWN"
LDAZ R0
LDX Z R1
LDY Z R2
RTI

INCZ,X00
BNE ENTERM
INCZ,X01
BCS ENTERM

LDAZ,X00
BNE NODEC
DECZ,X01
DEC Z,X 00
JSR QHEXTD1
JMP "MODIFY"

STY Z D+6
STY Z D+7

ASL A
TAX

EOR #F7
STAZD
JSR QDATFET

CPX #02

BCSNI

GET SAMPLE AUTO CARRY
AND AUTO A

KEEP GOING
USE WAIT TO GET OUT ONTO THE
THE SHOP BIT HIGH
MAIN PROGRAM
INITIALIZE STACK
AND B DATA DIRECTION REGISTER
MULTI-SCAN DISPLAY MODE
THE FAMILIAR DOT ON THE
DISPLAY
ALL EIGHT DISPLAYS AND
INITIALIZE EXEC
Y USED FOR AMUSEMENT

X ZERO ON EXIT, SO UP & DOWN
IMMEDIATELY VALID
MARK RETURN TO MONITOR POINT
DISPLAY DISPLAY & GET KEY
HEX KEY GETS THE DOTS BACK
REMOVE ANY STRAY BITS
(EFFECTIVELY SUBTRACT 10)

KEYS OF VALUE LESS THAN 4
NEED AN ADDRESS
KEY 4 IS THE LOAD KEY

KEY 6 IS UP
& KEY 7 IS DOWN
MUST BE KEY 5 - GET A BACK
GET X BACK
GET Y BACK
GET P & PC BACK & CONTINUE
FROM WHERE YOU WERE
16 BIT INDEXED INCREMENT

A BRANCH ALWAYS : THE CARRY
WAS SET BY THE FF11 COMPARE
16 BIT INDEXED DECREMENT

NOW DISPLAY THE VALUE
AND GET INTO THE MODIFY
SECTION
CLEAR DISPLAYS 6
& 7 _ Y WAS ZERO ON EXIT FROM
DISPLAY
DOUBLE A
THE ZERO PAGE ADDRESSES MAP,
GAP, PAP & FAP
FIX UP DIGIT 0 COMMAND SYMBOL

FETCH THE ADDRESS, AUTO MAP,
GAP, PAP OR FAP
CHECK X TO FIND OUT WHICH
COMMAND WE'RE DOING
MUST BE 2, 4 OR 6 - AS 0 IS

87
FE88

8B
8E
90
92
93
94
95

FE96

FE97
99
9B
9C
9E

FEA0

A2
A4

FEA6

A8
AA
AC
AE

FEB0
FEB1

B3
B6
B8
BB
BC

FEBD
C0
G1
C4
C5
C7
CA

FECD

FED0
D2
D4
D5
DY

D8
DA
DC

FEDD

FEDF

E2
E4

FEE7

60
20

20
B0
A0
0A
0A
0A
0A
0A

36
36
88
D0
F0
F6

D0
F6
B5

D5
D0
B5
D5
60
A0

8C
A0
8C
6A
6A
20
6A
8D
88
10
20
8C
20

84
A0
88
D0
88

D0
A4
60
A0

2C

30
20

90

64

0C
20
04

00
01

F8
E8
06

02
07
06

(07
04
07
09

40

22
07
20

CD

20

F6
CD
20
D0

1A
48

FD

FD
1A

08

20

FB
D0

CD

FE

FE

I

o%

0E

0E

FE

0E

FE
0E
FE

0E

FE

FF

QDATFE7

SHIFTIN

COM 16

UDINC

RETURN
PUTBYTE

AGAIN

WAIT

y2 W A I T

WAIT 1

WAIT 2

GETBYTE

START

INPUT

RTS
JSR QHEXTD1

JSR DISPLAY
BCS RETURN
LDY #04
ASLA
ASLA
ASLA
ASLA
ASLA

ROLZ,X00
ROLZ,X01
DEY
BNE SHIFTIN
BEQ QDATFET
INCZ,X06

BNE NOINC
INCZ,X07
LDAZ,X06

CMPZ,X08
BNE RETURN
LDAZ,X07
CMPZ,X 09
RTS
LDY #40

STY1ADDR
LDY #07
STY 1PIA
ROR A
ROR A
JSR WAIT
ROR A
STA 1PIA
DEY ,. '£ f

(BNE^GAIN
JSR WAIT
STY 1PIA
JSR 1/2WAIT

STY Z TY
LDY #48
DEY
BNE WAIT 1
DEY

BNE WAIT 2
LDYZTY
RTS
LDY #08

BIT 1PIA

BMISTART
JSR 1/2WAIT

JSR WAIT

QUAD DATA FETCH - DISPLAY OLD
DATA
GET KEY
NON HEX RETURN
LOOP COUNTER

DIGIT IN A IN CORRECT PLACE
MULTI SHIFT TO GET DIGIT INTO
MEMORY
INDEXED

- KEEPSHIFTING IN
- GO AND DO IT ALL AGAIN
- INCREMENTS COMPARE 16 BIT

NOS - INCREMENT LOWER
- NO HIGH INCREMENT

- LOW BYTE EQUALITY TEST

- NO NEED TO DO HIGH BYTE
- HIGH BYTE EQUALITY TEST

- PUT BYTE TO TAPE-CONFIGURE
I/O PORT

- LOOP COUNTER
- AND SEND THE START BIT

- BACK A UP A COUPLE OF BITS
- WAIT TO SEND OUT RESET BIT
- SENDING ORDER IS BIT 0->BIT 7
- SEND BIT

- KEEP GOING
- WAIT FOR THAT BIT TO END
- SEND STOP BIT : Y IS FF
- 300 BAND WAITING TIME - IN TWO

PARTS
- 1/2THE WAITING TIME-SAVE Y
- 72X5JUS DELAY
- PART ONE OF THE WAIT

- Y WAS ZERO ON ENTRY - 256 x 5/LtS
DELAY

- RETRIEVE Y

- GET BYTE FROM TAPE - LOAD
COUNTER

- WAIT FOR 1 ~>0TRANSISITON -
A START BIT

- WAIT HALF THE TIME, SO
SAMPLING IN THE CENTRE

- FULL WAIT TIME BETWEEN
SAMPLES

(16 BITS) APPEAR IN A USABLE FORM FOR THE OUTSIDE WORLD. THE ACORN
MONITOR USES DEVICE B1 TO CONTROL THE DISPLAY, CASSETTE INTERFACE
AND KEYBOARD.
EACH ONE OF THE 16 LINES MAY BE PROGRAMMED TO BE AN INPUT OR AN

CONTROL
LINES

DB7-D80

Output
Definition
Register

Output
Definition
Register

PA7-PA0

INTR

PB7-PB0

Bit
Operation

ADG-AD0
f[

128x8 RAM

if

8154 RAM I/O

OUTPUT DEPENDING ON THE STATE OF INTERNAL CONTROL REGISTERS.
ONLY A GENERAL DESCRIPTION OF THE DEVICE IS GIVEN HERE, IN
ADDITION TO THE FOLLOWING FUNCTIONS PORT A MAY BE SET TO
OPERATE IN A VARIETY OF DIFFERENT HANDSHAKING TRANSFER MODES
BY USE OF THE MODE DEFINITION REGISTER. IT SHOULD BE NOTED THAT
THESE MODES REQUIRE CONNECTION OF INTERRUPT AND THAT THE
INS8154 INTERRUPT LINE IS THE INVERSE OF THAT REQUIRED BY THE
PROCESSOR.

THE 16 LINES ARE, AS YOU MIGHT EXPECT, DIVIDED INTO TWO SEPERATE
BYTE SECTIONS A & B. A & B BOTH HAVE AN "OUTPUT DEFINITION
REGISTER" ASSOCIATED WITH THEM. EACH BIT IN THE O.D.R. DEFINES THE
ASSOCIATED BIT IN THE TORT' AS EITHER AN INPUT (0) OR AN OUPUT (1).
THUS, IN THE MONITOR WE WRITE FF TO THE SEGMENT O.D.R. TO USE ALL
ITS LINES AS OUTPUTS, AND 'DISPLAY' WRITES 07 TO THE DIGIT DRIVE
O.D.R. TO HAVE 3 OUTPUTS AND 5 INPUTS.
NOT ONLY MAY WE READ/WRITE TO THE OUTPUT PORT USING THE
PARALLEL READ & WRITE OPERATIONS, BUT WE MAY ALSO READ/WRITE
SINGLE BITS:

OPERATION
SET
SET
CLEAR
CLEAR
READ
READ
SET
SET
CLEAR
CLEAR
READ

BIT0
BIT 7
BIT0
BIT 7
BIT0
BIT 7
BIT1
BIT 6
BIT 2
BIT 5
BIT4

PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT

A
A
A
A
A
A
B
B
B
B
B

ADDRESS LOW
10
17
00
07
00 or 10
07 or 17
19
1E
0A
0D
0Cor1C
20
21
22
23

R/W
W
W
W
W
R
R
W
W
W
W
R
RorW
RorW
W
W

PORT A
PORTB
O.D.R.A.
O.D.R.B.

IF YOU READ A SINGLE BIT IT WILL END UP IN BIT 7 OF A BYTE, THUS THE
BIT INSTRUCTION WILL ASSIGN IT TO THE TESTABLE N FLAG.
THE INS8154 ALSO CONTAINS A USEFUL 128 BYTES OF RAM. THIS IS
CONTINUOUS FROM (ADDRESS LOW) 80 TO FF.
DEVICE B1 IS ENABLED FOR ADDRESS HIGH OF 0E, DEVICE B2 IS AT 09.

FE3E

40
42

44
46

48
FE4A

4C

4E
50

FE52

54

56

58
5A
5D

FE5E

FE60

62
FE64

FE66
68
68

FE6C

6D

FE6F

70
71
74

75
76
77
78
79

FE7A
7C
7E
7F
82
84

E4

D0
C9

90
A9

D0
C5
F0

85
49

29

C9

85

A6
82
60
A0

A0

D0
A0

B5
20
88
88

B5

C8

48
20
88

68
4A
4A
4A
4A

84
29
A8
B9
A4
99

19

F0
38

04
80

E6
0F
E4

0F
38

1F

10

0D

1A
21

00

06

0B
03

00
6F

01

7A

1A
0F

EA
1A
10

0E

FE

FE

FF

00

BUTTON

PRESSED

OUTPUT

MHEXTD

RDHEXTD

QHEXTD1

QHEXTD2

DHEXTD

HEXTD

CPX

BNE
CMP

BCC
LDA

BNE
CMP
BEQ

2 COL

DELAY
#38

PRESSED
#80

KEYCLEAR
2 EXEC
DELAY

STAZ EXEC
EOR #38

AND

CMP

I F

#10

STA^-KEY

LDX
STY
RTS
LDA

LDY

BNE
LDY

LDA
JSR I
DEY

DEY

LDA

INY

PHA
JSR I
DEY

PLA
LSR
LSR
LSR
LSR

STY
AND
TAY
LDA
LDY
STA,

ZTX
1PIB

(00, X)

#06

DHEXTD
#03

Z&00
DHEXTD

2,X 01

HEXTD

A
A
A
A

2TY
#0F

, Y FONT
ZTY
,YD

ARE WE ON THE SAME KEY'S
COLUMN?
NO
HAS A KEY ACTUALLY BEEN
PRESSED?
YES
NO, THEN CLEAR THE EXECUTION
STATUS - THE KEY HAS BEEN
PRESSED & RELEASED
ALWAYS BRANCH
A KEY HAS BEEN PRESSED
BUT IT HAS ALREADY BEEN
EXECUTED
SET IT AS BEING EXECUTED
JIGGERY POKERY TO ENCODE THE
ROW INPUTS TO BINARY
ALSO ENSURE THE KEY IN REPEAT
WAS OF REASONABLE SIZE
A HEX KEY OR NOT? CARRY CLEAR
IF HEX
PUT THE KEY IN A TEMP LOCATION
FOR FURTHER USE (BY "MODIFY")
RETRIEVE X
TURN THE SEGMENT DRIVES OFF
AND RETURN
MEMORY HEX TO DISPLAY = GET A
BYTE FROM MEMORY
RIGHT (OF DISPLAY) DOUBLE HEX
TO DISPLAY : SET Y TO RIGHT OF
DISPLAY
AND USE DHEXTD
QUAD HEX TO DISPLAY 1: SET Y
TO USE POSNS 1,2,3 & 4
2: USE ANY Y: GET THE DATA
AND USE DHEXTD

HAVING DECREMENTED THE
POSITION
GET THE HIGH BYTE OF THE DATA
& USE DHEXTD
DOUBLE HEX TO DISPLAY : FIRST
HEX ON RIGHTEST POSITION
SAVE A
USE HEX TO DISPLAY
GET Y BACK TO CORRECT
POSITION
RETRIEVE A

ORIENTATED FOR OTHER HEX
DIGIT
HEX TO DISPLAY = SAVE Y
REMOVE SURPLUS BITS FROM A
& PUT IT IN 7
GET THE 7 SEGMENT FORM
RETRIEVE Y
AND POSITION THE 7 SEG FORM ON
THE DISPLAY

ACORN MONITOR

ADDR HEX
CODE

FE00 A0 06

LABEL

QUAD

FE02
04

07
08
09
0A

FE0C
FE0E

10

FE13
15

17
1A

1D
20
22

24
26

B5 00 STILL
20 6F FE

CA
88
88
10 F6

86 1A DISPLAY
A2 07 R ESC AN
8E 22 0E

A0 00
B5 10

SCAN

8D 21 0E
8E 20 0E

AD 20 0E
29 3F
24 0F

10 18
70 0A

INSTRUCTION

LDY #06

LDA ZX 00
JSR DHEXTD

DEX
DEY
DEY
BPLSTILL

STX Z TX
LDX #07
STX 1 ADDR

LDY #00
LDA Z,X D

STA 1PIB
STX 1PIA

LDA 1PIA
AND#3F
BIT Z EXEC

BPL BUTTON
BVS DELAY

28

2A

2C

2E

FE30

FE32

33
35

FE36

38

3A
3C

C9

B0

86

A9

85

88

D0
CA
10

A5

30
10

38

06

19

40

0F

FD

DB

0E

D2
14

KEY
CLEAR
DELAY

CMP #38

BCSDELAY

STX Z COL

LDA #40

STA 2 fecEC '
DEY

BNE DELAY
DEX
BPL SCAN

LDA Z REPEAT

BMI RESCAN
BPL OUTPUT

COMMENTS

DISPLAY THE 4 BYTES AT X - 3 . X - 2 ,
X - 1 & X IN THAT ORDER ON THE
DISPLAY
- GET THE BYTE POINTED TO BY X
- USE DOUBLE HEX TO DISPLAY

ROUTINE
- NEXTX
- NEXT Y POSITION

- FALL AUTO DISPLAY WHEN
FINISHED - Y POSITION & ALSO
LOOP COUNTER

- SAVE X!!!!
- SCAN 8 DIGITS, NO MATTER WHAT
- SET UP DATA DIRECTION

REGISTER
- CLEAR Y FOR LATER USE
- GET DISPLAY DATA FROM THE

ZERO PAGE MEMORY
- & PUT IT ONTO SEGMENTS
- SET DIGIT DRIVE ON AND THE KEY

COLUMNS
- GET KEY DIGIT BACK
- REMOVE SURPLUS TOP BITS
- CHECK STATUS ='I 'MEANS NOT

PROCESSING A KEY
- BUT 0 MEANS THAT WE ARE
- THUS CAN BE BLOWN TO AN

ESCAPE FROM THE DISPLAY
ROUTINE ALTOGETHER ON STATUS
C0 AT THE MOMENT IT IGNORES
KEYS IF GIVEN THIS STATUS

- CHECK FOR ALL 1'S ROW INPUT
FROM KEYBOARD = SET COPY IOFSO

- IF ALL 1's THEN NO KEY HAS BEEN
PRESSED

- STORE THE PRESSED KEY'S
COLUMN INFORMATION

- SET STATUS TO "WE ARE
PROCESSING A KEY"

- Y WAS ZERO SO HERE IS A 256X5/JS
DELAY

- Y WILL BE ZERO ON EXIT

- IF X WAS STILL TVE,CONTINUE
THIS SCAN

- IF WE SHOULD CONTINUE
SCANNING THEN TOP BIT IS SET

- CONTINUE SCANNING
- IF TOP BIT IS ZERO, THEN USE THIS

DATA AS THE KEY ITSELF

ALSO ON THE CPU BOARD ISA5V REGULATOR. THIS PROVIDES THE
REGULATED +5V POWER SUPPLY USED BY ALLTHE I.C.S. ON THE BOARD, AND
THE KEYBOARD/INTERFACE BOARD WHEN CONNECTED. IF THE 2704 OR
2708 TYPE OF E.P.R.O.M. IS EMPLOYED IN SOCKET E, EXTRA +12 & - 5 V
POWER SUPPLY LINES ARE REQUIRED, AND TWO TRACKS ON THE P.C.B.
NEED CUTTING.

THE TWO CUTS ARE ON THE REAR
OF THE MPU BOARD IN THE TOP
LEFT HAND CORNER. X's MARK
THE SPOTS

(THERE IS NO PROVISION FOR ON-BOARD REGULATORS FOR THESE TWO
EXTRA SUPPLIES).
OF COURSE, THE 2716 EPROM NEEDS NO EXTRA SUPPLY LINES, AND IS THE
DEVICE THAT THE P.C.B. WAS DESIGNED FOR, IT PLUGS STRAIGHT INTO
SOCKET E.
THE CONNECTOR H CARRIES THE ADDRESS BUS, THE DATA BUS, THE
CONTROL BUS, POWER SUPPLY LINES AND THE 16 INPUT/OUTPUT LINES
FROM B2. THIS Wl LL PLUG INTO A BACKPLANE WHICH TAKES THE BUSSES
TO OTHER ACORN CARDS.

5.5 THE KEYBOARD AND TAPE INTERFACE
AT THE OTHER END OF THE BOARD, CONNECTOR I CARRIES ALL 16 I/O LINES
FROM DEVICE B1, AS WELL AS OV, +5V, 02 & RESET LINES. WITH THE
INTELLIGENT ACORN MONITOR AND THE KEYBOARD BOARD, THE I/O LINES
ARE DEDICATED AS FOLLOWS

SEGMENT DRIVES
BINARY ENCODED DIGIT DRIVES
KEYBOARD ROW INPUTS
FROM COMPUTER TO CASSETTE
FROM CASSETTE TO COMPUTER

B1 PORT B0-7
A0-2
A3-5
A6
A7

OUTPUTS
OUTPUTS
INPUTS
OUTPUT
INPUT

- A COMMENT FOR THOSE INTERESTED: ALTHOUGH THE KEYBOARD ONLY
CONSISTS OF 24 KEYS AT PRESENT, IT IS POSSIBLE, WITH A PRIORITY
ENCODER ON THE ROW INPUTS, TO USE UP TO 56 KEYS. THE DISPLAY
SUBROUTINE Wl LL COPE CORRECTLY WITH THE UNKNOWN KEYS, EXCEPT
THAT, AT THE POINT, OUTPUT, IT THROWS AWAY A SIGNIFICANT BIT OF
INFORMATION. HOWEVER, THE ACTUAL KEY VALUE HAS BEEN STORED IN
LOCATION 000F AND SO CAN BE RECOVERED. THE UNKNOWN KEYS WILL NOT
AFFECTTHE MONITOR ITSELF, SINCE AT THE POINT SEARCH MORE ITS OF
INFORMATION IS THROWN AWAY, LEAVING THE MONITOR WITH A CHOICE
OF EIGHT VALUES.
THE SUBROUTINE DISPLAY RUNS THE DISPLAY IN A MULTIPLEXED MANNER,
AT THE SAME TIME STROBING AND DEBOUNCING THE MATRIXED KEYBOARD
ON THE KEYBOARD BOARD. EACH OF THE EIGHT COLUMNS OF THE 8 X 3
KEYBOARD IS DRIVEN BY ONE OF THE EIGHT DIGIT DRIVER LINES, THE
THREE ROW LINES ARE CONNECTED TO DEVICE B1, AND THEY ARE PULLED
TO LOGIC ONE BY THE 4K7 RESISTORS. IN CONJUNCTION WITH ITS COLUMN
BEING DRIVEN LOW, A CLOSED KEY PRODUCES A LOW ON ONE OF THE ROW
INPUTS . • . +5V

4K7

M

8

0

G

9

1

P

A

2

S

B

3

L

C

4

R

D

5

t

E

6

F

7

1

ALL THE INTERFACE BETWEEN THE MICROPROCESSOR AND THE KEYBOARD
AND DISPLAY IS THUS ACCOMPLISHED BY ONE OCTAL DECODER/DRIVER
AND THREE RESISTORS.THE REST OF THE CIRCUITRY ON THE INTERFACE
BOARD ALLOWS PROGRAMS TO BE RECORDED ON CASSETTE AT THIRTY
BYTES PER SECOND, THE INTERFACE IS SLIGHTLY MORE COMPLICATED
THAN THE SINGLE I.C. AND THREE RESISTORS USED ABOVE, IT HAS TWO
TASKS.

I CONVERTTHE SERIALSTREAM OF INFORMATION PRODUCED BY PUTBYTE
INTO TONES SUITABLE FOR AN UNMODIFIED CASSETTE RECORDER TO
RECORD.THE FREQUENCIES USED ARE 2403.8 HZ FORA LOGIC ONE AND
1201.9 HZ FOR A LOGIC ZERO. THE FREQUENCIES ARE PRODUCED BY
DIVIDING 02, WHICH IS CRYSTAL CONTROLLED AT 1 MHZ, BY 416 OR 832.

II CONVERT THE PLAYED BACK FREQUENCIES INTO A STREAM OF BINARY
INFORMATION. THE PLAYBACK IS 'AMPLIFIED' INTO A SQUARE WAVE, AND
ITS PERIOD IS COMPARED WITH THE PERIOD OF A REFERENCE DIGITAL
MONOSTABLE ON THE CIRCUIT BOARD

BECAUSE OF THE AMPLIFICATION STAGE, THE OUTPUT FROM A TAPE
RECORDER'S 'LINE' OUTPUT, OR THE 'EAR' JACK SOCKET, SHOULD PERFORM
SATISFACTORILY EVEN AT MODEST VOLUME LEVEL. HOWEVER THE
COMPUTER OUTPUT IS AT QUITE HIGH LEVEL AND SHOULD BE ATTENUATED
FOR THE TAPE RECORDER. TO PREVENT NOISE PICK-UP THIS SHOULD BE

WITH THE COMPLETE PROCESSOR STATUS RECOVERED. THUS, IF WE FINISH
THE PROGRAM
020D 69 19 ADC #19
020F 20 60FE JSR RDHEXTD
0212 4C04FF JMP RESTART
0215

AND PRESS R,THE DISPLAYED ANSWER WILL BE 03

6.3 THE SINGLE STEPPING FACILITY
A MORE INTERESTING USE OF THE ROUTINE BREAK AT FFB3 IS IF YOU GENERATE
GENERATE A NMI EVERY OPCODE FETCHED NOT IN THE MONITOR, AS DISCUSSED
DISCUSSED IN THE HARDWARE SECTION THE SYNC PULSE ISSUED DURING AN
OPCODE FETCH IS LESS THAN 1 CYCLE LONG, WHILE NMI REQUIRES AT LEAST 2
CYCLES. A LATCH IS REQUIRED TO STRETCH THE SYNC SIGNAL

V274L574
BC 107

SYNC _ T L

PROMENABLE
SIGNAL

TO NMIOPEN
COLLECTOR LINE

SINGLE STEP OPEN./ 4K7

AND IT ALSO ONLY PROVIDES AN NMI WHEN NOT IN THE MONITOR. BEFORE
EXECUTING A PROGRAM SET THE NMI VECTOR (LOCATIONS 001C & 001D) TO
BREAK (FFB3) THE PROGRAM COUNTER RECALCULATION, IN 001 B, SHOULD
BE 00. EACH INSTRUCTION EXECUTED CAUSES THE MONITOR TO DISPLAY THE
STATUS OF THE PROCESSOR, PRESSING R CAUSES THE NEXT INSTRUCTION TO
BE EXECUTED. YOU MAY USE THE MONITOR TO ALTER A,X,Y (LOCATIONS)
000A, B & C) OR P (AT STACK POINTER + 1), BEFORE THE NEXT STEP. IT IS
INADVISABLE TO CHANGE PC (STACK POINTER +2 &+3), BUT THIS CAN BE
DONE AS WELL. THE SINGLE STEP EXECUTION CAN BE STOPPED IN TWO WAYS
1 GROUND NMI LINE/GROUND THE SET INPUT OF THE D FLIP-FLOP
Ji POINT THE NMI VECTOR AT AN RTI INSTRCTION, SAY THE ONE AT FFID
(EXECUTION OF A PROGRAM WILL BE SLOWED DOWN BY A FACTOR OF 5 OR
SO DUE TO THE PERSISTENT NMI'S.)
AN IMPORTANT NOTE: THE BREAK ROUTINE SETS THE REPEAT LOCATION
TO FF, SO THAT IT, AND THE MONITOR, MAY SAFELY USE THE DISPLAY
ROUTINE. IF YOU NEED TO USE SINGLE SCANS AND BREAKS TO THE BREAK
ROUTINE, SOME INGENUITY WILL BE REQUIRED, OR SOME DEDICATED
BUTTON PUSHING.
NOW THE COMPLETE MONITOR LISTING. THIS IS WRITTEN TO FIT IN THE TWO
512X4 PROMS.

A F T E R T H E ADDRESS IS SET UP, THEN ANY KEY Wl LL CHANGE THE STATE
OF IT'S CONTENTS: IF NOT A BREAK, A BREAK IS INSERTED, THE
ORIGINAL DATA IS SAVED IN LOCATION 0018. IF A BREAK,THEN THE
CONTENTS OF 0018 ARE INSERTED. THE RESULTING STATE OF THE
LOCATION IS DISPLAYED

DONE IN THE PLUG CONNECTING TO THE RECORDER

P. 0 2 0 0 0 0.

WE ARE NOW BACK AT FF04. BUT t & i NOW OPERATE ON THE P ADDRESS.
CONTENTS OF A LOCATION MAY BE CHANGED AS IF THIS WERE M.
PRESSING P TWICE WILL INSERT A BREAKPOINT (ONLY A SINGLE
LOCATION'S BACK-UP COPY IS RETAINED) AND SEND YOU BACK TO FF04.
THE M KEY WILL RETURN IT'S MEMORY ADDRESS WHEN PRESSED

NOW THE PROGRAM IS SITTING THERE WITH A BREAK AT 0200. EXECUTION
OF THIS BREAK Wl LL CAUSE AN I RQ AND CONTROL IS TRANSFERRED TO
THE ADDRESS IN LOCATION 00IE & 001 F: FOR DIAGNOSTICS THIS ADDRESS
SHOULD BE FFB3 (THE B3 IN 00IE&THE FF IN 00TE) ALSO .--•• 1^
THE PROGRAM COUNTER REQUIRES RESETTING AFTER A BREAK. THE
AMOUNT BY WHICH THIS IS DONE, 02, SHOULD BE STORED IN LOCATION 00IB
NOW EXECUTING THE BREAK CAUSES THE STATUS OF THE PROCESSOR TO
BE DISPLAYED IN THE FOLLOWING FORM

(HEX PAIRS OF DATA IN EACH)
(TWO BYTES EACH, SECOND SET DISPLAYED

AFTER ANY KEY IS PRESSED).

-SET INTERRUPT DISABLE
-CLEAR OVERFLOW
-CLEAR CARRY
-SET DECIMAL MODE
11

33
-INITIALISE STACK
22

FOR THE FIRST DISPLAY SET AND

FOR THE SECOND SET.
THE ACTIVE FLAGS ARE THE DECIMAL AND INTERRUPT DISABLE FLAGS,
(THE 2 PART OF THE STATUS REGISTER'S 2C IS AN UNUSED FLAG), THE
PROGRAM WAS STOPPED AT LOCATION 020D WITH AN EMPTY STACK (THREE
BYTES, PCH, PCL, P, WERE AUTOMATICALLY STACKED BY THE BRK
INSTRUCTION). YOU MAY NOW CONTINUE TO WRITE (OR CORRECT) THE
PROGRAM, USING THE MONITOR AS USUAL (BUT AVOID PRESSING THE RESET
KEY SINCE THE STACKED PCH, PCL & P WILL BE DESTROYED) PRESSING THE
R KEY WILL RETURN YOU TO 0200 TO TRY CONTINUING THE PROGRAM,

FIRST DISPLAY SET
SECOND DISPLAY SET:

THIS PROGRAM
0200
0201
0202
0203
0204
0206
0208
0209
020B
020 D
020 E
CAUSES

78
B8
18
F8
A9 11
A2 FF
A033
9A
AZ22
00

1 1
02

A X
PC

SEI
CLV
CLC
SED
LDA
LDX
LDY
TXS
LDX
BRK

2 2 3
0 D0

Y P
SP

#11
#FF
#33

#22

3 3 C
1 FC

PLUG
SCREENED LEAD

'FROM'TAPE
GROUND

BEST RECORDING RESULTS WITH A LEVEL OF ABOUT TWO-THI RDS MAXIMUM
LEVEL. THE VERY CHEAPEST TAPE RECORDERS SOMETIMES USE A DC. ERASE
SYSTEM, AND SUBSTANTIALLY POORER RESULTS MAY OCCUR ON RECORDING
OVER AN ALREADY RECORDED SECTION OF TAPE. HIGH FREQUENCY
RESPONSE IS ATAPREMIUM IN THIS APPLICATION, THE TAPE RECORDER'S
HEADS SHOULD BE CLEANED FREQUENTLY, AND, PREFERABLY,
DEMAGNETISED EVERY'8-10 HOURS. LOW QUALITY TAPES SHOULD BE
AVOIDEDSINCETHEYOFTENCAUSEVERY FAST BUILD UP OF DIRT ON THE
HEADS. THE SPEED OF THE REPLAYED DATA SHOULD NOT DEVIATE BEYOND
±5% OF THE RECORDED SPEED, SO DON'T USE BATTERIES FOR POWER, (OR C12<Z
CASSETTES SINCE THE THINNER, HEAVIER TAPE OFTEN GETS STUCK). CLEAN
THE EXPOSED CAPSTAN AND PRESSURE WHEEL WHEN YOU CLEAN THE
HEADS: A HEAD CLEANING TAPE MAY NOT MANAGE TO REMOVE OXIDE
BUILD-UP FROM THE MECHANISM.

5.6 POWER SUPPLY
THETWOBOARDSARESUPPLIEDBYTHE5V REGULATOR ON THE CPU BOARD.
IF ALL THE I.C.S. ARE IN PLACE ON THE CPU BOARD, THEN AT LEAST 600 MA
IS REQUIRED. PROPER REGULATION IS ENSURED BY NEVER LETTING THE
INPUT UNREGULATED SUPPLY DROP BELOW +7V. WHI LE THE REGULATOR IS
PERFECTLY HAPPY WITH+27V INPUT, IT WILL NEED TO DISSIPATE 13.2W AND
WILL GET EXTREMELY HOT.. . AND TURN ITSELF OFF DUE TO THERMAL
OVERLOAD, LOSING YOUR NICE PROGRAM IN THE R.A.M. UNLESS AN
ADDITIONAL HEAT SINK IS USED,+12V SHOULD BE REGARDED AS AN
ABSOLUTE MAXIMUM UNREGULATED INPUT, THE REGULATOR WILL NOT GET
SO HOT ASTO TURN ITSELF OFF, BUT YOU MIGHT RECEIVE ABURN IF YOU
TOUCH IT.

ADDITIONAL HEATSINK

CHAPTER 6: FIRMWARE
6.1 TAPE STORE AND LOAD
IN THE SOFTWARE SECTION WE USED SOME OF THE FUNCTIONS OF THE
ACORN MONITOR TO WRITE AND EXECUTE SOME SIMPLE PROGRAMS WHICH
DEMONSTRATED FEATURES OF THE MICROPROCESSOR AND PROGRAMMING.
THE MONITOR IS MORE POWERFUL THAN DEMONSTRATED IN THAT SECTION,
AND HERE WE'LL EXAMINE IT MORE CLOSELY, AND GIVE A COMPLETE
LISTING OF IT. AFTER THE M# G, t AND I KEYS, THE MOST USEFUL KEYS Wl LL
PROBABLY BE S AND L THESE ENABLE YOU TO STORE AND LOAD
PROGRAMS OF ANY SIZE USING CASSETTE TAPE OR A SIMI LAR RECORDING
MEDIUM. LET'S ASSUME WE WISH TO CREATE A TAPE VERSION OF THE DUCK-
SHOOT GAME. THIS WILL HAVE BEEN ENTERED IN MEMORY FROM ADDRESS,
SAY, 0200 TO ADDRESS 023F INCLUSIVE. AFTER TESTING THAT THE
PROGRAM ACTUALLY DOES WORK, PRESS THE S KEY.

F. XXXX

THE MONITOR IS PROMPTING YOU TO ENTER THE ADDRESS FROM WHICH
YOU WANT TO RECORD. THE DISPLAYED ADDRESS IS EITHER GARBAGE
OR THE LAST END ADDRESS USED. ENTER THE ADDRESS, TERMINATING
WITH ANY COMMAND KEY

F. 0 2 00
XXXX

THE MONITOR IS NOW PROMPTING YOU TO ENTER THE END ADDRESS. THIS
IS THE ADDRESS OF THE LAST BYTE IN YOUR PROGRAM + 1. THE
DISPLAYED ADDRESS IS EITHER GARBAGE OR THE LAST END ADDRESS
USED. ENTER THE ADDRESS, BUT DONT TERMINATE IT YET

0 2 4 0

THE SYSTEM IS NOW READY TO SERIALLY OUTPUT THAT SECTION OF
MEMORY. YOU SHOULD RECORD A BRIEF VERBAL DESCRIPTION OF THE
PROGRAM - "DUCKSHOOT" - AND ALSO THE ADDRESSES (OR ADDRESS OF
START AND LENGTH) WHICH THE PROGRAM USES. KEEP A LIST OF WHICH
PROGRAMS ARE STORED ON EACH TAPE. NOW CONNECT IN THE COMPUTER
AND START RECORDING. AFTER A FEW SECONDS, PRESS ANY COMMAND
KEY TO TERMINATE THE ADDRESS ENTRY. THE DISPLAY Wl LL GO BLANK,
WHILE THE PROCESSOR DEVOTES ITSELF TO SENDING THE INFORMATION
TO THE TAPE. WHEN THE DISPLAY

0 2 4 0

REAPPEARS, YOU MAY STOP THE TAPE-RECORDER: THE RECORDING IS
COMPLETE, AND YOU ARE BACK AT FF04. ANY HEX KEY HERE Wl LL BRING
BACK THE MONITOR'S DOTS, OR YOU MAY JUST START USING THE
MONITOR. THE RECORDING PROCEEDS AT 30 BYTES PER SECOND, THIS
PROGRAM, AT 68 BYTES (PROGRAM LENGTH + 4 BYTES OF ADDRESS
INFORMATION) TOOK ONLY TWO SECONDS TO RECORD.

TO LOAD A PROGRAM FROM THE TAPE YOU SHOULD BE IN A SITUATION
WHERE MONITOR COMMANDS ARE ACCEPTED, NOT WHERE YOU ARE
ALLOWED ANY KEY TO TERMINATE AN ADDRESS ENTRY. PLAY THE TAPE,
AND, WHEN THE 2403.8 HZ LEADER IS HEARD, PRESS THE L KEY. THE
DISPLAY WILL BE BLANK UNTIL DATA IS ENCOUNTERED ON TAPE, WHEN
EACH BYTE ENTERED WILL BE DISPLAYED AS A SYMBOL ON THE LEFTMOST
DIGIT. WHEN THE LAST BYTE HAS BEEN READ THE PREVIOUS DISPLAY Wl LL
RETURN - YOU'RE AT FF04 AGAIN. THE ADDRESSES INTO WHICH THE
PROGRAM IS LOADED WILL BE THOSE WITH WHICH IT WAS STORED ON TAPE,
BUT YOU MAY WISH TO DELIBERATELY AVOID THIS. JUST USING THE MONITOR,
THE BEST THAT CAN BE DONE IS TO TREAT THE ENTIRE RECORDING AS DATA
AND LOAD ENOUGH OF IT TO FIT BETWEEN TWO ADDRESSES: THE FIRST
FOUR BYTES LOADED WILL THUS BE THE ORIGINAL ADDRESSES THE
PROCEDURE IS

I SET ADDRESSES 0008 & 0009 TO THE LOW & HIGH BYTE OF THE ADDRESS
INTO WHICH YOU WISH TO PUT THE FIRST BYTE.

II SET ADDRESSES 000A&000B TO THE LOW & HIGH BYTE OF THE LAST
ADDRESS +1 INTO WHICH YOU WANT THE DATA TO BE LOADED.

I11 SET UP THE GO ADDRESS OF FF8A. START THE PLAYBACK, WHEN YOU
HEAR THE 2403.8 HZ LEADER, PRESS ANY KEY TO GO. LOADING Wl LL
OCCUR BETWEEN THE ADDRESSES SPECIFIED.

THE ABOVE PROCEDURE MAY NOT BE SATISFACTORY: IT LOADS THE
PROGRAM'S ADDRESSES AS DATA, AND DESTROYS THE DATA IN REGISTERS
0 AND 1 (A & X AFTER A BREAKPOINT) BETTER METHODS ARE GIVEN IN THE
SYSTEM SECTION OF THE APPLICATION PROGRAMS
THE LAST COMMENT ON LOAD FROM TAPE IS THAT IT IS POSSIBLE TO
CREATE A PROGRAM ON TAPE THAT WILL, WHEN LOADED, SEIZE CONTROL
AND EXECUTE ITSELF THIS IS IDEAL FOR, SAY, A BASIC INTERPRETER: YOU
JUST HAVE TO LOAD IT, AND IT AUTOMATICALLY SETS ITSELF RUNNING
AND PROMPTS READY. THE IDEA IS TO LOAD THE PROGRAM INTO THE
MONITOR^ ZERO PAGE REGISTERS, LOADING THE PROGRAM START ADDRESS
INTO GAP AND THE GO KEY (II) INTO REPEAT. CARE MUST BE TAKEN WHEN
YOU LOAD INTOfAPANDTAP: YOU MUST BE SURE TO LOAD WHAT'S
ALREADY THERE, OR SOMETHING SENSIBLE!

6.2 THE BREAKPOINT AND RESTORE COMMAND
THE FINAL TWO MONITOR FUNCTIONS ARE EMBODIED BY THE KEYS R AND
P. YOU MAY ALREADY HAVE DISCOVERED THAT PRESSING R IS DISASTROUS,
AND THAT PIS LIKE M, BUT WITH A PENCHANT FOR INSERTING 00 INTO THE
ADDRESS SPECIFIED. WITH THESE KEYS YOU ARE EXPECTED TO DEBUG (A
BUG IS ANY SMALL MISTAKE PREVENTING A PROGRAM FROM
FUNCTIONING) YOUR PROGRAMS. THE P KEY ALLOWS YOU TO INSERT THE
BREAK INSTRUCTION ON TOP OF AN INSTRUCTION AT A POINT WHERE YOU
SUSPECT SOMETHING SUSPICIOUS IS HAPPENING, SAY 0200:

P. 0 2 0 0

