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Introduction

This document defines a general purpose decimal arithmetic for both limited precision floating-point 
(as defined by the IEEE 754 standard1 approved in June 2008) and for arbitrary precision floating-
point (following the same principles as IEEE 754 and the earlier IEEE 854-1987 standard).2 In 
addition to floating-point arithmetic, integer and unrounded floating-point arithmetic are included as 
subsets. 

The primary audience for this document is implementers, so examples and other explanatory material 
are included.  Explanatory material is identified as Notes, Examples, or footnotes, and is not part of 
the formal specification. 

Appendix A (see page 55) describes a simplified subset of the full arithmetic which implements the 
decimal floating-point arithmetic defined in the ANSI standard X3.274-19963 (this provides the model 
for the unrounded floating-point rules). Appendix B (see page 59) summarizes the design concepts 
behind the decimal arithmetic. Appendix C (see page 61) lists the changes to this specification. 

This document in various softcopy formats, together with a reference implementation, testcases, 
concrete representations (encodings), and background information may be found at 
http://speleotrove.com/decimal 

Comments on this draft are welcome.  Please send any comments, suggestions, and corrections to the 
author, Mike Cowlishaw (mfc@uk.ibm.com). 
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1 IEEE 754-2008 – IEEE Standard for Floating-Point Arithmetic, The Institute of Electrical and Electronics Engineers, 
Inc., New York, 2008.  (In press.) 

2 IEEE 854-1987 – IEEE Standard for Radix-Independent Floating-Point Arithmetic, The Institute of Electrical and 
Electronics Engineers, Inc., New York, 1987. 

3 American National Standard for Information Technology – Programming Language REXX, X3.274-1996, American 
National Standards Institute, New York, 1996. 
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Scope

Objectives
This document defines a general purpose decimal arithmetic. A correct implementation of this 
specification using appropriate parameters will conform to the decimal arithmetic defined in IEEE 
standard 754-2008,4 except for some minor restrictions (see page 8), and will also provide unrounded 
decimal arithmetic5 and integer arithmetic as proper subsets. 

Inclusions
This specification defines the following: 

• Constraints on the values of decimal numbers 

• Operations on decimal numbers, including 

◦ Required conversions between string and internal representations of numbers 

◦ Arithmetical operations on decimal numbers (addition, subtraction, etc.) 

• Context information which alters the results of operation, and default contexts. 

• Exceptional conditions, such as overflow, underflow, undefined results, and other exceptional 
situations which may occur during operations. 

Exclusions
This specification does not define the following: 

• Concrete representations (storage format) of decimal numbers6 

• Concrete representations (storage format) of context information 

• The means by which operations are effected 

4 IEEE 754-2008 – IEEE Standard for Floating-Point Arithmetic, The Institute of Electrical and Electronics Engineers, 
Inc., New York, 2008.  (In press.) 

5 Sometimes called “fixed-point” decimal arithmetic. 
6 The IEEE 754 decimal encodings for interchange formats are described in: 

 http://speleotrove.com/decimal/decbits.pdf 
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Restrictions
This specification deviates from the requirements of IEEE 754 in the following respects: 

1. The remainder-near operator is restricted to those values where the intermediate integer can be 
represented in the current precision.7 

2. The mathematical functions do not, in general, correspond to the recommended functions in 
IEEE 754 with the same or similar names; in particular, the power function has some different 
special cases, and most of the functions may  be up to one unit wrong in the last place. 

3. The squareroot function is only specified here for one rounding algorithm (IEEE 754 requires it 
to be supported for all rounding algorithms).  However, it is defined to be correctly rounded. 

The requirements of IEEE 854 over the use of the terms single precision and double precision are not 
followed in this specification because since that standard was published these terms have become 
synonymous with particular sizes of encodings (32-bit and 64-bit respectively). 

7 This is because the conventional implementation of this operator would be unacceptably long-running for the range of 
numbers allowed by this specification (with up to nine digits of exponent). For restricted-range numbers, an 
implementation can easily be made to conform to IEEE 754 in this respect. 
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The Arithmetic Model

This specification is based on a model of decimal arithmetic which is a formalization of the decimal 
system of numeration (Algorism) as further defined and constrained by the relevant standards (IEEE 
854, ANSI X3-274, and IEEE 754-2008). 

There are three components to the model: 

1. numbers – which represent the values which can be manipulated by, or be the results of, the core 
operations defined in this specification 

2. operations – the core operations (such as addition, multiplication, etc.) which can be carried out 
on numbers 

3. context – which represents the user-selectable parameters and rules which govern the results of 
arithmetic operations (for example, the precision to be used). 

This specification defines these components in the abstract.  It neither defines the way in which 
operations are expressed (which might vary depending on the computer language or other interface 
being used),8 nor does it define the concrete representation (specific layout in storage, or in a processor’s 
register, for example) of numbers or context. 

The remainder of this section describes the abstract model for each component. 

Abstract representation of numbers
Numbers represent the values which can be manipulated by, or be the results of, the core operations 
defined in this specification. Numbers may be finite numbers (numbers whose value can be represented 
exactly) or they may be special values (infinities and other values which are not finite numbers). 

Finite numbers

Finite numbers are defined by three integer parameters: 

1. sign – a value which must be either 0 or 1, where 1 indicates that the number is negative or is the 
negative zero and 0 indicates that the number is zero or positive. 

2. coefficient – an integer which is zero or positive. 

In the abstract, there is no upper limit on the maximum size of the coefficient. In practice, an 
implementation may need to define a specific upper limit (for example, the length of the 
maximum coefficient supported by the concrete representation). This limit must be expressed as 
an integral number of decimal digits.9 

8 Indeed, some variations of operations could be selected by using context settings outside the scope of this specification. 
9 That is, the maximum value of the coefficient will be an integral power of ten, less one – for example, 
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3. exponent – a signed integer which indicates the power of ten by which the coefficient is 
multiplied. 

In the abstract, there is no upper limit on the absolute value of the exponent.  In practice there 
may be some upper limit, Elimit, on the absolute value of the exponent. 

If the coefficient has a maximum length then it is required10 that Elimit be greater than 5 × 
mlength, where mlength is the maximum length of the coefficient in decimal digits. It is 
recommended that Elimit be greater than 10 × mlength. 

The adjusted exponent is the value of the exponent of a number when that number is expressed as 
though in scientific notation with one digit (non-zero unless the coefficient is 0) before any 
decimal point. This is given by the value of the exponent+(clength-1), where clength is the 
length of the coefficient in decimal digits. 

When a limit to the exponent applies, it must result in a balanced range of positive or negative 
numbers,11 taking into account the magnitude of the coefficient. To achieve this balanced range, 
the minimum and maximum values of the adjusted exponent (Emin and Emax respectively) must 
have magnitudes which differ by no more than one, so Emin will be -Emax±1.  IEEE 754 further 
constrains this so that Emin = 1-Emax. 

Therefore, if the length of the coefficient is clength digits, the exponent may take any of the 
values -Elimit-(clength-1)+1 through Elimit-(clength-1). 

For example, if the coefficient had the value 123456789 (9 digits) and the exponent had an Elimit of 
999 (3 digits), then the exponent could range from -1006 through +991.  This would allow 
positive values of the number to range from 1.23456789E-998 through 1.23456789E+999. 

It is recommended that Emax be expressed as an integral number of decimal digits or be one of 
the numbers 1, 5, or 25, multiplied by an positive integral power of ten and optionally reduced 
by one (for example, 49 or 50). 

The numerical value of a finite number is given by: (-1)sign × coefficient × 10exponent. 

The quantum of a finite number is given by: 1 × 10exponent. This is the value of a unit in the least 
significant position of the coefficient of a finite number.12 

This abstract definition deliberately allows for multiple representations of values which are 
numerically equal but are visually distinct (such as 1 and 1.00).  However, there is a one-to-one 
mapping between the abstract representation and the result of the primary conversion to string using 
to-scientific-string (see page 19) on that abstract representation.  In other words, if one number has a 
different abstract representation to another, then the primary string conversion will also be different. 

Notes: 
1. Many concrete representations for finite numbers have been used successfully. Typically, the 

coefficient is represented in some form of binary coded or packed decimal, or is encoded using a 
base which is a higher power of ten.  It may also be expressed as a binary integer. The exponent 
is typically represented by a two’s complement or biased binary integer.  The IEEE 754 

99999999999999999999. 
10 See IEEE 854 §3.1. 
11 This rule, a requirement for both ANSI X3.274 and IEEE 854, constrains the number of values which would overflow or 

underflow when inverted (divided into 1). 
12 This is slightly different from an ulp (unit in last position), which is defined such that ulp(x) is the difference between the 

two nearest bracketing representable values to x, and which if x is exactly representable and is an exact power of the base 
gives the “ulp below”. 
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decimal-encoded concrete representations are described in detail at: 
http://speleotrove.com/decimal/decbits.html 

2. The one-to-one mapping between the abstract representation and the result of the primary 
conversion to string is required, as described above.  However, no such constraint applies to a 
concrete representation (that is, there may be multiple concrete representations of a single 
abstract representation). 

3. A number with a coefficient of 0 is permitted to have a non-zero sign. This negative zero is 
accepted as an operand for all operations (see IEEE 754 §3.2). 

Special values

In addition to the finite numbers, numbers must also be able to represent one of three named special 
values: 

1. infinity – a value representing a number whose magnitude is infinitely large (∞, see IEEE 754 
§3.2 and §6.1) 

2. quiet NaN – a value representing undefined results (“Not a Number”) which does not cause an 
Invalid operation condition. IEEE 754 recommends that additional diagnostic information be 
associated with NaNs (see IEEE 754 §3.2 and §6.2) 

3. signaling NaN – a value representing undefined results (“Not a Number”) which will usually 
cause an Invalid operation condition if used in any operation defined in this specification (see 
IEEE 754 §3.2 and §6.2). 

When a number has one of these special values, its coefficient and exponent are undefined.13 A NaN, 
however, may have associated diagnostic information, also known as its payload. This is treated as 
though it can be encoded as a positive integer (greater than zero) which must be no larger than can be 
represented by the coefficient less one digit.14 

All special values may have a sign, as for finite numbers. The sign of an infinity is significant (that is, it 
is possible to have both positive and negative infinity), and the sign of a NaN has no meaning, 
although it may be considered part of the diagnostic information. 

Normal numbers, subnormal numbers and Underflow

In any context where exponents are bounded most finite numbers are normal.  Non-zero finite numbers 
whose adjusted exponents are greater than or equal to Emin are called normal numbers; those non-zero 
numbers whose adjusted exponents are less than Emin are called subnormal numbers.15 Like other 
numbers, subnormal numbers are accepted as operands for all operations, and may result from any 
operation.  If a result is subnormal, before any rounding, then the Subnormal condition is raised. 

For a subnormal result, the minimum value of the exponent becomes Emin-(precision-1), called Etiny, 
where precision is the working precision, as described below (see page 13). The result will be rounded, 
if necessary, to ensure that the exponent is no smaller than Etiny. If, during this rounding, the result 

13 Typically, in a concrete representation, certain out-of-range values of the exponent are used to indicate the special values, 
and the coefficient is used to carry additional diagnostic information for quiet NaNs.  In the case of the proposed IEEE 
754 decimal formats, the exponent is 0, the coefficient (excluding the first digit) may hold a decimal value which is the 
diagnostic information, and the special value is indicated by the combination field and exponent continuation bits. 

14 This restriction allows the abstract coefficient in IEEE 754 encodings to be used to hold the diagnostic information for a 
NaN. 

15 That is, numbers whose absolute value is non-zero and is closer to zero than ten to the power of Emin. 
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becomes inexact, then the Underflow condition is raised. A subnormal result does not necessarily raise 
Underflow, therefore, but is always indicated by the Subnormal condition (even if, after rounding, its 
value is 0 or ten to the power of Emin). 

When a number underflows to zero during a calculation, its exponent will be Etiny. The maximum value 
of the exponent is unaffected. 

Note that the minimum value of the exponent for subnormal numbers is the same as the minimum 
value of exponent which can arise during operations which do not result in subnormal numbers, which 
occurs in the case where clength = precision. 

Notation

In later sections of this document, a specific finite number is described by its abstract representation, 
using the triad notation: [sign, coefficient, exponent], where each value is an integer.  Only the exponent 
can be negative. 

Similarly, pairs or triads are used to indicate the special values. These have the form [sign, special-
value] or the form [sign, special-value, diagnostic], where the sign is indicated as before, and the special-
value is one of inf, qNaN, or sNaN, representing infinity, quiet NaN, or signaling NaN, respectively, and 
diagnostic is a positive integer. 

So, for example, the triad [0,2708,-2] represents the number 27.08, the triad [1,1953,0] 
represents the integer -1953, the pair [1,inf] represents the number -∞, and the pair [0,qNaN] 
represents a quiet NaN. 

Abstract representation of operations
The core operations which must be provided by an implementation are described in later sections 
which define Conversions (see page 17) and Arithmetic Operations (see page 23). Each operation is 
given an abstract name (for example, “add”), and its semantics are strictly defined.  However, the 
implementation of each operation and the manner by which each is effected is not defined by this 
specification. 

For example, in a object-oriented language, the addition operation might be effected by a method 
called add, whereas in a calculator application it might be effected by clicking on a button icon.  In 
other uses, an infix “+” symbol might be used to indicate addition.  And in all cases, the operation 
might be carried out in software, hardware, or some combination of these. 

Similarly, operations which are distinct in the specification need not be mapped one-to-one to distinct 
operations in the implementation – it is only necessary that all the core operations are available.  For 
example, conversions to a string could be handled by a single method, with variations determined 
from context or additional arguments. 
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Abstract representation of context
The context represents the user-selectable parameters and rules which govern the results of arithmetic 
operations (for example, the precision to be used).  This context might be implied in some way, or be a 
global or local setting, or be passed to operations – depending on the implementation of the 
specification (for example, in a programming language). 

The context is defined by the following parameters: 

precision An integer which must be positive (greater than 0). This sets the maximum number of 
significant digits that can result from an arithmetic operation. 

In the abstract, there is no upper bound on the precision (although a specific precision 
must always be provided).  In practice there may need to be some upper limit to it (for 
example, the length of the maximum coefficient supported by a concrete 
representation).  This limit must be expressed as an integral number of decimal digits. 

Similarly, there may be a lower bound on the setting on precision, which may be the 
same as the upper bound (for example, if it is implied by the length of the maximum 
coefficient supported by a concrete representation).  This limit must also be expressed 
as an integral number of decimal digits. 

rounding A named value which indicates the algorithm to be used when rounding is necessary. 
Rounding is applied when a result coefficient has more significant digits than the value 
of precision; in this case the result coefficient is shortened to precision digits and may 
then be incremented by one (which may require a further shortening), depending on 
the rounding algorithm selected and the remaining digits of the original coefficient. The 
exponent is adjusted to compensate for any shortening. 

The five following rounding algorithms are defined and must be supported: 16 
round-down (Round toward 0; truncate.) The discarded digits are ignored; the 

result is unchanged. 
round-half-up If the discarded digits represent greater than or equal to half (0.5) of 

the value of a one in the next left position then the result coefficient 
should be incremented by 1 (rounded up).  Otherwise the discarded 
digits are ignored. 

round-half-even If the discarded digits represent greater than half (0.5) the value of a 
one in the next left position then the result coefficient should be 
incremented by 1 (rounded up). If they represent less than half, then 
the result coefficient is not adjusted (that is, the discarded digits are 
ignored). 

Otherwise (they represent exactly half) the result coefficient is 
unaltered if its rightmost digit is even, or incremented by 1 (rounded 
up) if its rightmost digit is odd (to make an even digit). 

round-ceiling (Round toward +∞.) If all of the discarded digits are zero or if the sign 
is 1 the result is unchanged. Otherwise, the result coefficient should be 

16 The term “round to nearest” is not used because it is ambiguous. round-half-up is the usual round-to-nearest algorithm 
used in European countries, in international financial dealings, and in the USA for tax calculations. round-half-even is 
often used for other applications in the USA, where it is usually called “round to nearest” and is sometimes called 
“banker’s rounding”. 
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incremented by 1 (rounded up). 
round-floor (Round toward -∞.) If all of the discarded digits are zero or if the sign 

is 0 the result is unchanged. Otherwise, the sign is 1 and the result 
coefficient should be incremented by 1. 

Three further rounding algorithms are defined; these are optional: 
round-half-down If the discarded digits represent greater than half (0.5) of the value of a 

one in the next left position then the result coefficient should be 
incremented by 1 (rounded up).  Otherwise (the discarded digits are 
0.5 or less) the discarded digits are ignored. 

round-up (Round away from 0.) If all of the discarded digits are zero the result 
is unchanged. Otherwise, the result coefficient should be incremented 
by 1 (rounded up). 

round-05up (Round zero or five away from 0.) The same as round-up, except that 
rounding up only occurs if the digit to be rounded up is 0 or 5, and 
after overflow the result is the same as for round-down.17 

When a result is rounded, the coefficient may become longer than the current precision. 
In this case the least significant digit of the coefficient (it will be a zero) is removed 
(reducing the precision by one), and the exponent is incremented by one. This in turn 
may give rise to an overflow condition (see page 53), which determines the result after 
overflow. 

17 The rounding mode round-05up permits arithmetic at shorter lengths to be emulated in a fixed-precision environment 
without double rounding.  For example, a multiplication at a precision of 9 can be effected by carrying out the 
multiplication at (say) 16 digits using round-05up and then rounding to the required length using the desired rounding 
algorithm. 
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flags and trap-
enablers 

The exceptional conditions (see page 51) are grouped into signals, which can be 
controlled individually. The context contains a flag (which is either 0 or 1) and a trap-
enabler (which also is either 0 or 1) for each signal. 

For each of the signals, the corresponding flag is set to 1 when the signal occurs.  It is 
only reset to 0 by explicit user action. 

For each of the signals, the corresponding trap-enabler indicates which action is to be 
taken when the signal occurs (see IEEE 754 §7). If 0, a defined result is supplied, and 
execution continues (for example, an overflow is perhaps converted to a positive or 
negative infinity).  If 1, then execution of the operation is ended or paused and control 
passes to a “trap handler”, which will have access to the defined result. 

The signals are: 
clamped raised when the exponent of a result has been altered or constrained in 

order to fit the constraints of a specific concrete representation 
division-by-zero raised when a non-zero dividend is divided by zero 
inexact raised when a result is not exact (one or more non-zero coefficient 

digits were discarded during rounding) 
invalid-operation raised when a result would be undefined or impossible 
overflow raised when the exponent of a result is too large to be represented 
rounded raised when a result has been rounded (that is, some zero or non-zero 

coefficient digits were discarded) 
subnormal raised when a result is subnormal (its adjusted exponent is less than 

Emin), before any rounding 
underflow raised when a result is both subnormal and inexact. 

This specification does not define the means by which flags and traps are reset or 
altered, respectively, or the means by which traps are effected.18 

The context might also specify further variables, such as Emax where a variable exponent bound is 
required. 

Notes: 
1. The setting of precision may be used to reduce a result to a narrower precision, using the plus 

operation. 

2. IEEE 854 and IEEE 754 were designed under the assumption that some small number of known 
precisions would be available to users.  This specification extends this concept to allow (but not 
require) variable precisions, as specified by ANSI X3.274.  This generalization allows improved 
interoperation between software arbitrary-precision decimal packages and hardware 
implementations (which are expected to have relatively low maximum precision limits, 
typically just tens of digits). 

3. precision can be set to positive values lower than nine. Small values, however, should be used 
with care – the loss of precision and rounding thus requested will affect all computations 
affected by the context, including comparisons. To conform to IEEE 854, this value should not 

18 IEEE 754 suggests that there be a mechanism allowing traps to return a substitute result to the operation that raised the 
exception, but this may not be possible in some environments (including some object-oriented environments). 
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be set less than 6; the smallest IEEE 754 interchange format supports 7. 

4. The concrete representation of rounding is often a series of integer constants, or an enumeration, 
held in an object or control register. 

5. It has been proposed that each exceptional condition should have its own, distinct, signal and 
trap-enabler.  This specification may change to this approach. 

Default contexts
This specification defines optional default contexts, which define suitable settings for basic arithmetic 
and for the extended arithmetic defined by IEEE 854 and IEEE 754. It is recommended that the default 
contexts be easily selectable by the user. 

Basic default context

In the basic default context, the parameters are set as follows: 

• flags – all set to 0 

• trap-enablers – inexact, rounded, and subnormal are set to 0; all others are set to 1 (that is, the other 
conditions are treated as errors) 

• precision – is set to 9 

• rounding – is set to round-half-up 

Extended default contexts

In the extended default contexts, the parameters are set as follows: 

• flags – all set to 0 

• trap-enablers – all set to 0 (IEEE 854 §7) 

• precision – is set to the appropriate precision for a given numerical format (for the IEEE 754 
smallest and basic formats, the precisions are 7, 16, or 34 digits). 

• rounding – is set to round-half-even (IEEE 754 §4.3.3) 
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Conversions

This section defines the required conversions between the abstract representation of numbers and 
string (character) form.19 Two number-to-string conversions and one string-to-number conversion are 
defined. 

It is strongly recommended that implementations also provide conversions to and from a Binary 
Coded Decimal (BCD) representation, as appropriate for the implementation platform.  Most decimal 
data are encoded in some form of BCD, and also a BCD form (especially one digit per byte) is easy to 
manipulate for further processing, formatting, etc. 

It is recommended that implementations also provide conversions to and from binary floating-point or 
integer numbers, if appropriate (that is, if such encodings are supported in the environment of the 
implementation).  It is suggested that such conversions be exact, if possible (that is, when converting 
from binary to decimal), or alternatively give the same results as converting using an appropriate 
string representation as an intermediate form. It is also recommended that if a number is too large to 
be converted to a given binary integer format then an exceptional or error condition be raised, rather 
than losing high-order significant bits (decapitating). 

It is recommended that implementations also provide additional number formatting routines (including 
some which are locale-dependent), and if available should accept non-European decimal digits in 
strings. 

Notes: 
1. The setting of precision may be used to convert a number from any precision to any other 

precision, using the plus operation. 

2. Integers are a proper subset of numbers, hence no conversion operation from an integer to a 
number is necessary. Conversion from a number to an integer with an exponent of zero is 
effected by using the quantize operation (see page 36). Conversion from a number to an 
integral value (with a non-negative exponent) is effected by using the round-to-integral-value 
operation (see page 39) or the round-to-integral-exact operation (see page 39). These meet the 
requirements of IEEE 754 §5.3.1 and §5.3.2. 

Numeric string syntax
Strings which are acceptable for conversion to the abstract representation of numbers, or which might 
result from conversion from the abstract representation to a string, are called numeric strings. 

A numeric string is a character string that describes either a finite number or a special value. 

• If it describes a finite number, it includes one or more decimal digits, with an optional decimal 

19 See also IEEE 754 §5.12. 
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point. The decimal point may be embedded in the digits, or may be prefixed or suffixed to them. 
The group of digits (and optional point) thus constructed may have an optional sign (“+” or “-”) 
which must come before any digits or decimal point. 

The string thus described may optionally be followed by an “E” (indicating an exponential part), 
an optional sign, and an integer following the sign that represents a power of ten that is to be 
applied. The “E” may be in uppercase or lowercase. 

• If it describes a special value, it is one of the case-independent names “Infinity”, “Inf”, 
“NaN”, or “sNaN” (where the first two represent infinity and the second two represent quiet NaN 
and signaling NaN respectively). The name may be preceded by an optional sign, as for finite 
numbers. If a NaN, the name may also be followed by one or more digits, which encode any 
diagnostic information. 

No blanks or other white space characters are permitted in a numeric string. 

Formally:20 
sign           ::=  '+' | '-'
digit          ::=  '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' |
                    '8' | '9'
indicator      ::=  'e' | 'E'
digits         ::=  digit [digit]...
decimal-part   ::=  digits '.' [digits] | ['.'] digits
exponent-part  ::=  indicator [sign] digits
infinity       ::=  'Infinity' | 'Inf'
nan            ::=  'NaN' [digits] | 'sNaN' [digits]
numeric-value  ::=  decimal-part [exponent-part] | infinity
numeric-string ::=  [sign] numeric-value | [sign] nan 

where the characters in the strings accepted for infinity and nan may be in any case. 

If an implementation supports the concept of diagnostic information on NaNs, the numeric strings for 
NaNs may include one or more digits, as shown above.21 These digits encode the diagnostic 
information in an implementation-defined manner; however, conversions to and from string for 
diagnostic NaNs should be reversible if possible.  If an implementation does not support diagnostic 
information on NaNs, these digits should be ignored where necessary.  A plain “NaN” is usually the 
same as “NaN0”. 

Examples: 
Some numeric strings are: 

    "0"         -- zero
    "12"         -- a whole number
   "-76"         -- a signed whole number
    "12.70"      -- some decimal places
    "+0.003"     -- a plus sign is allowed, too
   "017."        -- the same as 17
      ".5"       -- the same as 0.5
    "4E+9"       -- exponential notation
     "0.73e-7"   -- exponential notation, negative power
    "Inf"        -- the same as Infinity
    "-infinity"  -- the same as -Inf
    "NaN"        -- not-a-Number
    "NaN8275"    -- diagnostic NaN 

20 Where quotes surround terminal characters, “::=” means “is defined as”, “|” means “or”, “[]” encloses an optional 
item, and “[]...” encloses an item which is repeated 0 or more times. 

21 In IEEE 754 interchange formats, the diagnostic information (payload) is held in a similar manner to the coefficient of a 
finite number in the same format, but has one digit fewer. 
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Notes: 
1. A single period alone or with a sign is not a valid numeric string. 

2. A sign alone is not a valid numeric string. 

3. Significant (after the decimal point) and insignificant leading zeros are permitted. 

to-scientific-string – conversion to numeric string
This operation converts a number to a string, using scientific notation if an exponent is needed. The 
operation is not affected by the context. 

If the number is a finite number then: 

• The coefficient is first converted to a string in base ten using the characters 0 through 9 with no 
leading zeros (except if its value is zero, in which case a single 0 character is used). 

Next, the adjusted exponent is calculated; this is the exponent, plus the number of characters in the 
converted coefficient, less one. That is, exponent+(clength-1), where clength is the length of 
the coefficient in decimal digits. 

If the exponent is less than or equal to zero and the adjusted exponent is greater than or equal to -
6, the number will be converted to a character form without using exponential notation.  In this 
case, if the exponent is zero then no decimal point is added. Otherwise (the exponent will be 
negative), a decimal point will be inserted with the absolute value of the exponent specifying the 
number of characters to the right of the decimal point.  “0” characters are added to the left of the 
converted coefficient as necessary.  If no character precedes the decimal point after this insertion 
then a conventional “0” character is prefixed. 

Otherwise (that is, if the exponent is positive, or the adjusted exponent is less than -6), the number 
will be converted to a character form using exponential notation. In this case, if the converted 
coefficient has more than one digit a decimal point is inserted after the first digit. An exponent in 
character form is then suffixed to the converted coefficient (perhaps with inserted decimal point); 
this comprises the letter “E” followed immediately by the adjusted exponent converted to a 
character form.  The latter is in base ten, using the characters 0 through 9 with no leading zeros, 
always prefixed by a sign character (“-” if the calculated exponent is negative, “+” otherwise). 

Otherwise (the number is a special value): 

• If the special value is quiet NaN then the resulting string is “NaN”, optionally followed by one or 
more digits representing diagnostic information.  The digits will have no leading zeros. 

• If the special value is signaling NaN then the resulting string is “sNaN”,22 optionally followed by 
one or more digits representing diagnostic information, as for a quiet NaN. 

• If the special value is infinity then the resulting string is “Infinity”. 

In all cases, the entire string is prefixed by a minus sign character23 (“-”) if sign is 1.  No sign character 
is prefixed if sign is 0. 

Examples: 
For each abstract representation [sign, coefficient, exponent], [sign, special-value], or [sign, special-value, 

22 This is a deviation from IEEE 854-1987 (see Notes) but is permitted by IEEE 754-2008. 
23 This specification defines only the glyph representing a minus sign character. Depending on the implementation, this will 

often correspond to a hyphen rather than to a distinguishable “minus” character. 
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diagnostic] on the left, the resulting string is shown on the right. 
[0,123,0]       "123"
[1,123,0]       "-123"
[0,123,1]       "1.23E+3"
[0,123,3]       "1.23E+5"
[0,123,-1]      "12.3"
[0,123,-5]      "0.00123"
[0,123,-10]     "1.23E-8"
[1,123,-12]     "-1.23E-10"
[0,0,0]         "0"
[0,0,-2]        "0.00"
[0,0,2]         "0E+2"
[1,0,0]         "-0"
[0,5,-6]        "0.000005"
[0,50,-7]       "0.0000050"
[0,5,-7]        "5E-7"
[0,inf]         "Infinity"
[1,inf]         "-Infinity"
[0,qNaN]        "NaN"
[0,qNaN,123]    "NaN123"
[1,sNaN]        "-sNaN" 

Notes: 
1. There is a one-to-one mapping between abstract representations and the result of this 

conversion.  That is, every abstract representation has a unique to-scientific-string 
representation.  Also, if that string representation is converted back to an abstract representation 
using to-number (see page 21) with sufficient precision, then the original abstract 
representation will be recovered. 

This one-to-one mapping guarantees that there is no hidden information in the internal 
representation of the numbers (“what you see is exactly what you’ve got”). 

2. The values quiet NaN and signaling NaN are distinguished in string form in order to preserve the 
one-to-one mapping just described. The strings chosen are those suggested by the IEEE 754 
review committee and permitted by IEEE 754-2008. 

3. The digits required for an exponent may be more than the number of digits required for Emax 

when a finite number is subnormal (see page 11). 

to-engineering-string – conversion to numeric string
This operation converts a number to a string, using engineering notation if an exponent is needed. 

The conversion exactly follows the rules for conversion to scientific numeric string except in the case 
of finite numbers where exponential notation is used.  In this case, 

• if the number is non-zero, the converted exponent is adjusted to be a multiple of three 
(engineering notation) by positioning the decimal point with one, two, or three characters 
preceding it (that is, the part before the decimal point will range from 1 through 999); this may 
require the addition of either one or two trailing zeros (otherwise, if after the adjustment the 
decimal point would not be followed by a digit then it is not added) 

• if the number is a zero, the zero will have a decimal point and one or two trailing zeros added, if 
necessary, so that the original exponent of the zero would be recovered by the to-number 
conversion. 
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If the final exponent is zero then no indicator letter and exponent is suffixed. 

Examples: 
For each abstract representation [sign, coefficient, exponent] on the left, the resulting string is shown on 
the right. 

[0,123,1]       "1.23E+3"
[0,123,3]       "123E+3"
[0,123,-10]     "12.3E-9"
[1,123,-12]     "-123E-12"
[0,7,-7]        "700E-9"
[0,7,1]         "70"
[0,0,1]         "0.00E+3" 

to-number – conversion from numeric string
This operation converts a string to a number, as defined by its abstract representation. The string is 
expected to conform to the numeric string syntax (see page 17). 

Specifically, if the string represents a finite number then: 

• If it has a leading sign, then the sign in the resulting abstract representation is set appropriately 
(1 for “-”, 0 for “+”).  Otherwise the sign is set to 0. 

The decimal-part and exponent-part (if any) are then extracted from the string and the exponent-
part (following the indicator) is converted to form the integer exponent which will be negative if 
the exponent-part began with a “-” sign.  If there is no exponent-part, the exponent is set to 0. 

If the decimal-part included a decimal point the exponent is then reduced by the count of digits 
following the decimal point (which may be zero) and the decimal point is removed.  The 
remaining string of digits has any leading zeros removed (except for the rightmost digit) and is 
then converted to form the coefficient which will be zero or positive. 

A numeric string to finite number conversion is always exact unless there is an underflow or 
overflow (see below) or the number of digits in the decimal-part of the string is greater than the 
precision in the context.  In this latter case the coefficient will be rounded (shortened) to exactly 
precision digits, using the rounding algorithm, and the exponent is increased by the number of 
digits removed.  The rounded and other flags may be set, as if an arithmetic operation had taken 
place (see below). 

If the value of the adjusted exponent (see page 9) is less than Emin, then the number is subnormal 
(see page 11). In this case, the calculated coefficient and exponent form the result, unless the 
value of the exponent is less than Etiny, in which case the exponent will be set to Etiny (see page 
11), and the coefficient will be rounded (possibly to zero) to match the adjustment of the 
exponent, with the sign remaining as set above. If this rounding gives an inexact result then the 
Underflow exceptional condition (see page 53) is raised. 

If (after any rounding of the coefficient) the value of the adjusted exponent is larger than Emax 

(see page 9), then an exceptional condition (overflow) results.  In this case, the result is as 
defined under the Overflow exceptional condition (see page 53), and may be infinite. It will 
have the sign as set above. 

If the string represents a special value then: 

• For all special values, the sign of the number is set to 1 if the string has a leading “-”. 
Otherwise (there is a leading “+”, or no leading sign) the sign is set to 0. 
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• The strings “Infinity” and “Inf”, independent of case, will be converted to infinity. 

• The string “NaN”, independent of case, is converted to quiet NaN. If any digits follow the string 
“NaN”, any leading zeros are removed and the digits are then converted to form the diagnostic 
information for the NaN in a system-dependent way.  If the implementation does not support 
diagnostic information on NaNs the digits should be ignored. 

• The string “sNaN”, independent of case, is converted to signaling NaN. If any digits follow the 
string “sNaN”, they are treated in the same way as for quiet NaNs. 

The result of attempting to convert a string which does not have the syntax of a numeric string is 
[0,qNaN]. 

Examples: 
For each string on the left, the resulting abstract representation [sign, coefficient, exponent], [sign, special-
value], or [sign, special-value, diagnostic] is shown on the right.  precision is at least 3. 

"0"            [0,0,0]
"0.00"         [0,0,-2]
"123"          [0,123,0]
"-123"         [1,123,0]
"1.23E3"       [0,123,1]
"1.23E+3"      [0,123,1]
"12.3E+7"      [0,123,6]
"12.0"         [0,120,-1]
"12.3"         [0,123,-1]
"0.00123"      [0,123,-5]
"-1.23E-12"    [1,123,-14]
"1234.5E-4"    [0,12345,-5]
"-0"           [1,0,0]
"-0.00"        [1,0,-2]
"0E+7"         [0,0,7]
"-0E-7"        [1,0,-7]
"inf"          [0,inf]
"+inFiniTy"    [0,inf]
"-Infinity"    [1,inf]
"NaN"          [0,qNaN]
"-NAN"         [1,qNaN]
"SNaN"         [0,sNaN]
"Fred"         [0,qNaN] 
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Arithmetic operations

This section describes the arithmetic operations on, and some other functions of, numbers, including 
subnormal numbers, negative zeros, and special values (see also IEEE 754 §5 and §6). 

Arithmetic operation notation

In this section, a simplified notation is used to illustrate arithmetic operations: a number is shown as 
the string that would result from using the to-scientific-string operation. Single quotes are used to 
indicate that a number converted from an abstract representation is implied. 

Also, operations are indicated as functions (taking up to three operands), and the sequence ==> means 
“results in”. Hence: 

add('12', '7.00') ==> '19.00' 

means that the result of the add operation with the operands [0,12,0] and [0,700,-2] is 
[0,1900,-2]. 

Finally, in this example and in the examples below, the context is assumed to have precision set to 9, 
rounding set to round-half-up, and all trap-enablers set to 0. 

Arithmetic operation rules

The following general rules apply to all arithmetic operations except where stated below. 

• Every operation on finite numbers is carried out (as described under the individual operations 
below) as though an exact mathematical result is computed, using integer arithmetic on the 
coefficient where possible. 

If the coefficient of the theoretical exact result has no more than precision digits, then (unless 
there is an underflow or overflow) it is used for the result without change. Otherwise (it has 
more than precision digits) it is rounded (shortened) to exactly precision digits, using the current 
rounding algorithm, and the exponent is increased by the number of digits removed. 

If the value of the adjusted exponent (see page 9) of the result is less than Emin (that is, the result 
is zero or subnormal), the calculated coefficient and exponent form the result, unless the value 
of the exponent is less than Etiny, in which case the exponent will be set to Etiny, the coefficient will 
be rounded (if necessary, and possibly to zero) to match the adjustment of the exponent, and the 
sign is unchanged. 

If the result (before rounding) was non-zero and subnormal then the Subnormal exceptional 
condition (see page 53) is raised. If rounding of a subnormal result leads to an inexact result 
then the Underflow exceptional condition (see page 53) is also raised. 
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If the value of the adjusted exponent of a non-zero result is larger than Emax (see page 9), then an 
exceptional condition (overflow) results.  In this case, the result is as defined under the 
Overflow exceptional condition (see page 53), and may be infinite. It will have the same sign as 
the theoretical result.24 

• Arithmetic using the special value infinity follows the usual rules, where [1,inf] is less than 
every finite number and [0,inf] is greater than every finite number.  Under these rules, an 
infinite result is always exact.  Certain uses of infinity raise an Invalid operation condition (see 
page 52). 

• signaling NaNs always raise the Invalid operation condition when used as an operand to an 
arithmetic operation. 

• The Invalid operation condition may also be raised when an operand to an operation is invalid 
(for example, if it exceeds the bounds that an implementation can handle, or the operation is a 
logarithm and the operand is negative). 

• The result of any arithmetic operation which has an operand which is a NaN (a quiet NaN or a 
signaling NaN) is [s,qNaN] or [s,qNaN,d].  The sign and any diagnostic information is copied 
from the first operand which is a signaling NaN, or if neither is signaling then from the first 
operand which is a NaN. Whenever a result is a NaN, the sign of the result depends only on the 
copied operand (the following rules do not apply). 

• The sign of the result of a multiplication or division will be 1 only if the operands have different 
signs. 

• The sign of the result of an addition or subtraction will be 1 only if the result is less than zero, 
except for the special cases below where the result is a negative 0. 

• A result which is a negative zero ([1,0,n]) can occur only when: 

◦ a result is rounded to zero, and the value before rounding had a sign of 1. 

◦ the operation is an addition of [1,0,n] to [1,0,n], or a subtraction of [0,0,n] from 
[1,0,n] 

◦ the operation is an addition of operands with opposite signs (or is a subtraction of operands 
with the same sign), the result has a coefficient of 0, and the rounding is round-floor. 

◦ the operation is a multiplication or division and the result has a coefficient of 0 and the signs 
of the operands are different. 

◦ the operation is power, the left-hand operand is [1,0,n], and the right-hand operand is 
positive, integral, and odd. 

◦ the operation is power, the left-hand operand is [1,inf], and the right-hand operand is 
negative, integral, and odd. 

24 In practice, it is only necessary to work with intermediate results of up to twice the current precision.  Some rounding 
settings may require some inspection of possible remainders or additional digits (for example, to determine whether a 
result is exactly 0.5 in the next position), though their actual values would not be required. 

For round-half-up, rounding can be effected by truncating the result to precision (and adding the count of 
truncated digits to the exponent). The first truncated digit is then inspected, and if it has the value 5 
through 9 the result is incremented by 1.  This could cause the result to again exceed precision digits, in 
which case it is divided by 10 and the exponent is incremented by 1. 
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◦ the operation is quantize or a round-to-integral, the left-hand operand is negative, and the 
magnitude of the result is zero.  In either case the final exponent may be non-zero. 

◦ the operation is square-root and the operand is [1,0,n]. 

◦ the operation is one of the operations max, max-magnitude, min, min-magnitude, next-
plus, next-toward, reduce, or is a copy operation. 

Examples involving special values: 
add('Infinity', '1')        ==>  'Infinity'
add('NaN', '1')             ==>  'NaN'
add('NaN', 'Infinity')      ==>  'NaN'
subtract('1', 'Infinity')   ==>  '-Infinity'
multiply('-1', 'Infinity')  ==>  '-Infinity'
subtract('-0', '0')         ==>  '-0'
multiply('-1', '0')         ==>  '-0'
divide('1', '0')            ==>  'Infinity'
divide('1', '-0')           ==>  '-Infinity'
divide('-1', '0')           ==>  '-Infinity' 

Notes: 
1. Operands may have more than precision digits and are not rounded before use. 

2. The context (precision and rounding, etc.) for an operation might be wholly implied, or be a 
global or local setting, or be passed to operations individually – depending on the 
implementation of the specification (for example, in a programming language). 

3. NaNs propagate any associated diagnostic information as described in IEEE 854 §6.2.  The 
meaning of any such diagnostic information is outside the scope of this specification, but 
typically indicates the origin of the NaN. In IEEE 754-2008, this information is only held in the 
coefficient of decimal numbers and does not use the first digit of the coefficient. 

4. The rules above imply that the compare operation can return a quiet NaN as a result, which 
indicates an “unordered” comparison (see IEEE 754 §5.11). 

5. An implementation may use the compare operation “under the covers” to implement a closed 
set of comparison operations (greater than, equal, etc.) if desired.  In this case, the additional 
constraints detailed in IEEE 754 §5.11 will apply; that is, a comparison (such a “greater than”) 
which does not explicitly allow for an “unordered” result yet would require an unordered result 
will give rise to an Invalid operation condition (see page 52). 

6. If a result is rounded, remains finite, and is not subnormal, its coefficient will have exactly 
precision digits (except after the quantize or round-to-integral operations, as described below). 
That is, only unrounded or subnormal coefficients can have fewer than precision digits. 

7. Trailing zeros are not removed after operations. The reduce operation may be used to remove 
trailing zeros if desired. 
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abs
abs takes one operand. If the operand is negative, the result is the same as using the minus operation 
(see page 33) on the operand. Otherwise, the result is the same as using the plus operation (see page 
33) on the operand. 

Examples: 
abs('2.1')    ==>  '2.1'
abs('-100')   ==>  '100'
abs('101.5')  ==>  '101.5'
abs('-101.5') ==>  '101.5' 

Note that the result of this operation is affected by context and may set flags.  The copy-abs operation 
(see page 44) may be used if this is not desired. 

add and subtract
add and subtract both take two operands. If either operand is a special value then the general rules 
apply. 

Otherwise, the operands are added (after inverting the sign used for the second operand if the operation 
is a subtraction), as follows: 

• The coefficient of the result is computed by adding or subtracting the aligned coefficients of the 
two operands.  The aligned coefficients are computed by comparing the exponents of the 
operands: 

◦ If they have the same exponent, the aligned coefficients are the same as the original 
coefficients. 

◦ Otherwise the aligned coefficient of the number with the larger exponent is its original 
coefficient multiplied by 10n, where n is the absolute difference between the exponents, and 
the aligned coefficient of the other operand is the same as its original coefficient. 

If the signs of the operands differ then the smaller aligned coefficient is subtracted from the 
larger; otherwise they are added. 

• The exponent of the result is the minimum of the exponents of the two operands. 

• The sign of the result is determined as follows: 

◦ If the result is non-zero then the sign of the result is the sign of the operand having the larger 
absolute value. 

◦ Otherwise, the sign of a zero result is 0 unless either both operands were negative or the signs 
of the operands were different and the rounding is round-floor. 

The result is then rounded to precision digits if necessary, counting from the most significant digit of 
the result. 

Examples: 
add('12', '7.00')        ==>  '19.00'
add('1E+2', '1E+4')      ==>  '1.01E+4'
subtract('1.3', '1.07')  ==>  '0.23'
subtract('1.3', '1.30')  ==>  '0.00'
subtract('1.3', '2.07')  ==>  '-0.77' 
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compare
compare takes two operands and compares their values numerically. If either operand is a special value 
then the general rules apply.  No flags are set unless an operand is a signaling NaN. 

Otherwise, the operands are compared as follows. 

If the signs of the operands differ, a value representing each operand (’-1’ if the operand is less than 
zero, ’0’ if the operand is zero or negative zero, or ’1’ if the operand is greater than zero) is used in 
place of that operand for the comparison instead of the actual operand.25 

The comparison is then effected by subtracting the second operand from the first and then returning a 
value according to the result of the subtraction: ’-1’ if the result is less than zero, ’0’ if the result is 
zero or negative zero, or ’1’ if the result is greater than zero. 

An implementation may use this operation “under the covers” to implement a closed set of comparison 
operations (greater than, equal, etc.) if desired.  It need not, in this case, expose the compare operation 
itself. 

Examples: 
compare('2.1', '3')     ==>  '-1'
compare('2.1', '2.1')   ==>  '0'
compare('2.1', '2.10')  ==>  '0'
compare('3', '2.1')     ==>  '1'
compare('2.1', '-3')    ==>  '1'
compare('-3', '2.1')    ==>  '-1' 

Notes: 
1. The result of compare is always exact and unrounded, and may be a NaN. 

2. The compare-total operation (see page 42) can be used for a non-numerical comparison which 
provides a total ordering over the abstract representation of values. 

compare-signal
compare-signal takes two operands and compares their values numerically.  This operation is 
identical to compare, except that if neither operand is a signaling NaN then any quiet NaN operand is 
treated as though it were a signaling NaN.  (That is, all NaNs signal, with signaling NaNs taking 
precedence over quiet NaNs.) 

divide
divide takes two operands. If either operand is a special value then the general rules apply. 

Otherwise, if the divisor is zero then either the Division undefined condition is raised (if the dividend 
is zero) and the result is NaN, or the Division by zero condition is raised and the result is an Infinity 
with a sign which is the exclusive or of the signs of the operands. 

Otherwise, a “long division” is effected, as follows: 

• An integer variable, adjust, is initialized to 0. 

• If the dividend is non-zero, the coefficient of the result is computed as follows (using working 
copies of the operand coefficients, as necessary): 

25 This rule removes the possibility of an arithmetic overflow during a numeric comparison. 
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1. The operand coefficients are adjusted so that the coefficient of the dividend is greater than or 
equal to the coefficient of the divisor and is also less than ten times the coefficient of the 
divisor, thus: 

• While the coefficient of the dividend is less than the coefficient of the divisor it is 
multiplied by 10 and adjust is incremented by 1. 

• While the coefficient of the dividend is greater than or equal to ten times the coefficient 
of the divisor the coefficient of the divisor is multiplied by 10 and adjust is 
decremented by 1. 

2. The result coefficient is initialized to 0. 

3. The following steps are then repeated until the division is complete: 

• While the coefficient of the divisor is smaller than or equal to the coefficient of the 
dividend the former is subtracted from the latter and the coefficient of the result is 
incremented by 1. 

• If the coefficient of the dividend is now 0 and adjust is greater than or equal to 0, or if 
the coefficient of the result has precision digits, the division is complete. 

Otherwise, the coefficients of the result and the dividend are multiplied by 10 and 
adjust is incremented by 1. 

4. Any remainder (the final coefficient of the dividend) is recorded and taken into account for 
rounding.26 

Otherwise (the dividend is zero), the coefficient of the result is zero and adjust is unchanged 
(is 0). 

• The exponent of the result is computed by subtracting the sum of the original exponent of the 
divisor and the value of adjust at the end of the coefficient calculation from the original 
exponent of the dividend. 

• The sign of the result is the exclusive or of the signs of the operands. 

The result is then rounded to precision digits, if necessary, according to the rounding algorithm and 
taking into account the remainder from the division. 

Examples: 
divide('1', '3'  )      ==>  '0.333333333'
divide('2', '3'  )      ==>  '0.666666667'
divide('5', '2'  )      ==>  '2.5'
divide('1', '10' )      ==>  '0.1'
divide('12', '12')      ==>  '1'
divide('8.00', '2')     ==>  '4.00'
divide('2.400', '2.0')  ==>  '1.20'
divide('1000', '100')   ==>  '10'
divide('1000', '1')     ==>  '1000'
divide('2.40E+6', '2')  ==>  '1.20E+6' 

Note that the results as described above can alternatively be expressed as follows: 

• The ideal (simplest) exponent for the result of a division is the exponent of the dividend less the 
exponent of the divisor. 

26 In practice, only two bits need to be noted, indicating whether the remainder was 0, or was exactly half of the final 
coefficient of the divisor, or was in one of the two ranges above or below the half-way point. 
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• After the division, if the result is exact then the coefficient and exponent giving the correct 
value and with the exponent closest to the ideal exponent is returned.  If the result is inexact, the 
coefficient will have exactly precision digits (unless the result is subnormal), and the exponent 
will be set appropriately. 

divide-integer
divide-integer takes two operands; it divides two numbers and returns the integer part of the result. If 
either operand is a special value then the general rules apply. 

Otherwise, the result returned is defined to be that which would result from repeatedly subtracting the 
divisor from the dividend while the dividend is larger than or equal to the divisor.  During this 
subtraction, the absolute values of both the dividend and the divisor are used: the sign of the final 
result is the same as that which would result if normal division were used. 

In other words, if the operands x and y were given to the divide-integer and remainder operations, 
resulting in i and r respectively, then the identity 

x = i × y + r 

holds. 

The exponent of the result must be 0.  Hence, if the result cannot be expressed exactly within precision 
digits, the operation is in error and will fail – that is, the result cannot have more digits than the value 
of precision in effect for the operation, and will not be rounded. For example, divide-
integer(’10000000000’, ’3’) requires ten digits to express the result exactly (’3333333333’) 
and would therefore fail if precision were in the range 1 through 9. 

Notes: 
1. The divide-integer operation may not give the same result as truncating normal division (which 

could be affected by rounding and might be Inexact). 

2. The divide-integer and remainder operations are defined so that they may be calculated as a by-
product of the standard division operation (described above).  The division process is ended as 
soon as the integer result is available; the residue of the dividend is the remainder. 

3. The divide and divide-integer operation on the same operands give results of the same 
numerical value if no error occurs and there is no residue from the divide-integer operation. 

Examples: 
divide-integer('2', '3')    ==>  '0'
divide-integer('10', '3')   ==>  '3'
divide-integer('1', '0.3')  ==>  '3' 

exp
exp takes one operand. If the operand is a NaN then the general rules for special values apply. 

Otherwise, the result is e raised to the power of the operand, with the following cases: 

• If the operand is -Infinity, the result is 0 and exact. 

• If the operand is a zero, the result is 1 and exact. 

• If the operand is +Infinity, the result is +Infinity and exact. 
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• Otherwise the result is inexact and will be rounded using the round-half-even algorithm.  The 
coefficient will have exactly precision digits (unless the result is subnormal). These inexact 
results should be correctly rounded, but may be up to 1 ulp (unit in last place) in error. 

Examples: 
exp('-Infinity')    ==> '0'
exp('-1')           ==> '0.367879441'
exp('0')            ==> '1'
exp('1')            ==> '2.71828183'
exp('0.693147181')  ==> '2.00000000'
exp('+Infinity')    ==> 'Infinity' 

Notes: 
1. The rounding setting in the context is not used; this means that the algorithm described in 

Variable Precision Exponential Function by T. E. Hull and A. Abrham (ACM Transactions on 
Mathematical Software, Vol 12 #2, pp79–91, ACM, June 1986) may be used for this operation. 

2. When the result is inexact, the cost of exp at precision d is likely to be at least 13×log2(d) times 
the cost of an inexact multiplication at the same precision (see Multiple-precision zero-finding 
methods and the complexity of elementary function evaluation by R. P. Brent, in Analytic 
Computational Complexity pp151–176, Academic Press, York, 1976, and Fast Multiple-
Precision Evaluation of Elementary Functions by the same author, in Journal of the ACM 
(JACM), Vol 23 # 2, pp242–251, ACM, April 1976). 

fused-multiply-add
fused-multiply-add takes three operands; the first two are multiplied together, using multiply, with 
sufficient precision and exponent range that the result is exact and unrounded.27 No flags are set by the 
multiplication unless one of the first two operands is a signaling NaN or one is a zero and the other is 
an infinity. 

Unless the multiplication failed, the third operand is then added to the result of that multiplication, 
using add, under the current context. 

In other words, fused-multiply-add(x, y, z) delivers a result which is (x × y) + z with 
only the one, final, rounding. 

Examples: 
fused-multiply-add('3', '5', '7')               ==>  '22'
fused-multiply-add('3', '-5', '7')              ==>  '-8'
fused-multiply-add('888565290', '1557.96930',
                                '-86087.7578')  ==>  '1.38435736E+12' 

Note that the last example would have given the result ’1.38435735E+12’ if the operation had been 
carried out as a separate multiply followed by an add. 

27 This requires up to twice the current exponent range and a precision which is the sum of the lengths of the two operands’ 
coefficients. 
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ln
ln takes one operand. If the operand is a NaN then the general rules for special values apply. 

Otherwise, the operand must be a zero or positive, and the result is the natural (base e) logarithm of 
the operand, with the following cases: 

• If the operand is a zero, the result is -Infinity and exact. 

• If the operand is +Infinity, the result is +Infinity and exact. 

• If the operand equals one, the result is 0 and exact. 

• Otherwise the result is inexact and will be rounded using the round-half-even algorithm.  The 
coefficient will have exactly precision digits (unless the result is subnormal). These inexact 
results should be correctly rounded, but may be up to 1 ulp (unit in last place) in error. 

Examples: 
ln('0')           ==> '-Infinity'
ln('1.000')       ==> '0'
ln('2.71828183')  ==> '1.00000000'
ln('10')          ==> '2.30258509'
ln('+Infinity')   ==> 'Infinity' 

Notes: 
1. The rounding setting in the context is not used. 

2. When the result is inexact, the cost of ln at a given precision is likely to be similar to, or more 
expensive than, the exp function (see notes under that function). 

log10
log10 takes one operand. If the operand is a NaN then the general rules for special values apply. 

Otherwise, the operand must be a zero or positive, and the result is the base 10 logarithm of the 
operand, with the following cases: 

• If the operand is a zero, the result is -Infinity and exact. 

• If the operand is +Infinity, the result is +Infinity and exact. 

• If the operand equals an integral power of ten (including 100 and negative powers) and there is 
sufficient precision to hold the integral part of the result, the result is an integer (with an 
exponent of 0) and exact. 

• Otherwise the result is inexact and will be rounded using the round-half-even algorithm.  The 
coefficient will have exactly precision digits (unless the result is subnormal). These inexact 
results should be correctly rounded, but may be up to 1 ulp (unit in last place) in error. 

Examples: 
log10('0')          ==> '-Infinity'
log10('0.001')      ==> '-3'
log10('1.000')      ==> '0'
log10('2')          ==> '0.301029996'
log10('10')         ==> '1'
log10('70')         ==> '1.84509804'
log10('+Infinity')  ==> 'Infinity' 
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Notes: 
1. The rounding setting in the context is not used. 

2. When the result is inexact, the cost of log10 at a given precision is likely to be similar to, or 
more expensive than, the exp function (see notes under that function). 

max
max takes two operands, compares their values numerically, and returns the maximum.28 If either 
operand is a NaN then the general rules apply, unless one is a quiet NaN and the other is numeric, in 
which case the numeric operand is returned.29 

Otherwise, the operands are compared as as though by the compare operation (see page 27).  If they 
are not numerically equal then the maximum (closer to positive infinity) of the two operands is chosen 
as the result. Otherwise (they are numerically equal): 

• if the operand signs differ the operand with sign 0 is chosen 

• if the signs and exponents are equal the operands are identical so either can be chosen 

• if the signs are both positive, the operand with the maximum exponent is chosen 

• if the signs are both negative, the operand with the minimum exponent is chosen. 

For numerical results, the result is the same as using the plus operation (see page 33) on the chosen 
operand, except that the sign of a zero does not change. 

Examples: 
max('3', '2')    ==>  '3'
max('-10', '3')  ==>  '3'
max('1.0', '1')  ==>  '1'
max('7', 'NaN')  ==>  '7' 

max-magnitude
max-magnitude takes two operands and compares their values numerically with their sign ignored and 
assumed to be 0. 

If, without signs, the first operand is the larger then the original first operand is returned (that is, with 
the original sign). If, without signs, the second operand is the larger then the original second operand 
is returned. Otherwise the result is the same as from the max operation. 

min
min takes two operands, compares their values numerically, and returns the minimum.30 If either 
operand is a NaN then the general rules apply, unless one is a quiet NaN and the other is numeric, in 
which case the numeric operand is returned. 

Otherwise, the operands are compared as as though by the compare operation (see page 27).  If they 
are not numerically equal then the minimum (closer to negative infinity) of the two operands is chosen 

28 This is the IEEE 754 maxnum operation, with an explicit result for equal operands. 
29 This permits a useful ordering of data in which NaNs are used to indicate “unknown” values. 
30 This is the IEEE 754 minnum operation, with an explicit result for equal operands. 
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as the result. Otherwise (they are numerically equal): 

• if the operand signs differ the operand with sign 1 is chosen 

• if the signs and exponents are equal the operands are identical so either can be chosen 

• if the signs are both positive, the operand with the minimum exponent is chosen 

• if the signs are both negative, the operand with the maximum exponent is chosen. 

For numerical results, the result is the same as using the plus operation (see page 33) on the chosen 
operand, except that the sign of a zero does not change. 

Examples: 
min('3', '2')    ==>  '2'
min('-10', '3')  ==>  '-10'
min('1.0', '1')  ==>  '1.0'
min('7', 'NaN')  ==>  '7' 

min-magnitude
min-magnitude takes two operands and compares their values numerically with their sign ignored and 
assumed to be 0. 

If, without signs, the first operand is the smaller then the original first operand is returned (that is, with 
the original sign). If, without signs, the second operand is the smaller then the original second operand 
is returned. Otherwise the result is the same as from the min operation. 

minus and plus
minus and plus both take one operand, and correspond to the prefix minus and plus operators in 
programming languages. 

The operations are evaluated using the same rules as add and subtract; the operations plus(a) and 
minus(a) (where a and b refer to any numbers) are calculated as the operations add(’0’, a) and 
subtract(’0’, b) respectively, where the ’0’ has the same exponent as the operand. 

Examples: 
plus('1.3')    ==>  '1.3'
plus('-1.3')   ==>  '-1.3'
minus('1.3')   ==>  '-1.3'
minus('-1.3')  ==>  '1.3' 

Note that the result of these operations is affected by context and may set flags.  The copy-negate 
operation (see page 44) may be used instead of minus if this is not desired. 

multiply
multiply takes two operands. If either operand is a special value then the general rules apply. 

Otherwise, the operands are multiplied together (“long multiplication”), resulting in a number which 
may be as long as the sum of the lengths of the two operands, as follows: 

• The coefficient of the result, before rounding, is computed by multiplying together the 
coefficients of the operands. 

Version 1.70 Arithmetic operations 33



• The exponent of the result, before rounding, is the sum of the exponents of the two operands. 

• The sign of the result is the exclusive or of the signs of the operands. 

The result is then rounded to precision digits if necessary, counting from the most significant digit of 
the result. 

Examples: 
multiply('1.20', '3')         ==>  '3.60'
multiply('7', '3')            ==>  '21'
multiply('0.9', '0.8')        ==>  '0.72'
multiply('0.9', '-0')         ==>  '-0.0'
multiply('654321', '654321')  ==>  '4.28135971E+11' 

next-minus
next-minus takes one operand; if the operand is a NaN then the general rules apply. Otherwise the 
result is the largest representable number that is smaller than the operand unless the operand is 
-Infinity, in which case the result is -Infinity.  If the result is zero its sign will be 0 and its exponent 
will be the smallest possible. No flags will be set when the operand is numeric. 

In the following examples, Emax and Emin are assumed to be +999 and -999 respectively. 

Examples: 
next-minus('1')            ==>  '0.999999999'
next-minus('1E-1007')      ==>  '0E-1007'
next-minus('-1.00000003')  ==>  '-1.00000004'
next-minus('Infinity')     ==>  '9.99999999E+999' 

next-plus
next-plus takes one operand; if the operand is a NaN then the general rules apply. Otherwise the result 
is the smallest representable number that is larger than the operand unless the operand is +Infinity, in 
which case the result is +Infinity.  If the result is zero its sign will be 1 and its exponent will be the 
smallest possible. No flags will be set when the operand is numeric. 

In the following examples, Emax and Emin are assumed to be +999 and -999 respectively. 

Examples: 
next-plus('1')            ==>  '1.00000001'
next-plus('-1E-1007')     ==>  '-0E-1007'
next-plus('-1.00000003')  ==>  '-1.00000002'
next-plus('-Infinity')    ==>  '-9.99999999E+999' 

next-toward
next-toward takes two operands; if either operand is a NaN then the general rules apply. Otherwise 
the result is the representable number closest to the first operand (but not the first operand) that is in 
the direction towards the second operand, unless the operands have the same value.  Specifically: 

• If the second operand is larger than the first operand then the result is the result of the operation 
next-plus on the first operand 

• If the second operand is smaller than the first operand then the result is the result of the 
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operation next-minus on the first operand 

• If the two operands are numerically equal, then the result is a copy of the first operand with the 
sign set to be the same as the sign of the second operand; in this case no flags are set. 

In the first two cases, flags are set as though the operation had been computed by adding (in the first 
case) or subtracting (in the second) an infinitesimally small positive value to or from the first operand 
with the rounding mode set to be round-ceiling or round-floor respectively.31 

In the following examples, Emax and Emin are assumed to be +999 and -999 respectively. 

Examples: 
next-toward('1', '2')              ==>  '1.00000001'
next-toward('-1E-1007', '1')       ==>  '-0E-1007'
next-toward('-1.00000003', '0')    ==>  '-1.00000002'
next-toward('1', '0')              ==>  '0.999999999'
next-toward('1E-1007', '-100')     ==>  '0E-1007'
next-toward('-1.00000003', '-10')  ==>  '-1.00000004'
next-toward('0.00', '-0.0000')     ==>  '-0.00' 

This operation derives its anomalous rules for flags from the IEEE 754-1985 operation nextAfter; the 
operation was dropped from the IEEE 754-2008 standard. 

power
power takes two operands, and raises a number (the left-hand operand) to a power (the right-hand 
operand). If either operand is a special value then the general rules apply, except as stated below. 

The following rules apply: 

• If both operands are zero, or if the left-hand operand is less than zero and the right-hand 
operand does not have an integral value32 or is infinite, an Invalid operation condition (see page 
52) is raised, the result is [0,qNaN], and the following rules do not apply. 

• If the left-hand operand is infinite, the result will be exact and will be infinite if the right-hand 
side is positive, 1 if the right-hand side is a zero, and 0 if the right-hand side is negative. 

• If the left-hand operand is a zero, the result will be exact and will be infinite if the right-hand 
side is negative or 0 if the right-hand side is positive. 

• If the right-hand operand is a zero, the result will be 1 and exact. 

• In cases not covered above, the result will be inexact unless the right-hand side has an integral 
value and the result is finite and can be expressed exactly within precision digits. In this latter 
case, if the result is unrounded then its exponent will be that which would result if the operation 
were calculated by repeated multiplication (if the second operand is negative then the reciprocal 
of the first operand is used, with the absolute value of the second operand determining the 
multiplications). 

• Inexact finite results should be correctly rounded, but may be up to 1 ulp (unit in last place) in 
error. 

• The sign of the result will be 1 only if the right-hand side has an integral value and is odd (and is 

31 The result can in fact be computed by an appropriate addition, with one infinite value having a special case result and the 
sign of a zero result being set appropriately. 

32 That is, any fractional part (after the decimal point) is non-zero. 
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not infinite) and also the sign of the left-hand side is 1. In all other cases, the sign of the result 
will be 0. 

Examples: 
power('2', '3')             ==>  '8'
power('-2', '3')            ==>  '-8'
power('2', '-3')            ==>  '0.125'
power('1.7', '8')           ==>  '69.7575744'
power('10', '0.301029996')  ==>  '2.00000000'
power('Infinity', '-1')     ==>  '0'
power('Infinity', '0')      ==>  '1'
power('Infinity', '1')      ==>  'Infinity'
power('-Infinity', '-1')    ==>  '-0'
power('-Infinity', '0')     ==>  '1'
power('-Infinity', '1')     ==>  '-Infinity'
power('-Infinity', '2')     ==>  'Infinity'
power('0', '0')             ==>  'NaN' 

Notes: 
1. When the result is inexact, the cost of power at a given precision is likely to be at least twice as 

expensive as the exp function (see notes under that function). 

2. An infinite result is always exact, as described in the general rules. 

3. Versions of this specification prior to version 1.48 defined a simpler power operation which 
only required support for integer powers. 

4. It can be argued that the special cases where one operand is zero and the other is infinite (such 
as power(’0’, ’Infinity’) and power(’Infinity’, ’0’)) should return a NaN, 
whereas the specification above leads to results of 0 and 1 respectively for the two examples 
(for compatibility with the earlier version of this operation). If NaN results are desired instead, 
then these special cases should be tested for before calling the power operation. 

quantize
quantize takes two operands. If either operand is a special value then the general rules apply, except 
that if either operand is infinite and the other is finite an Invalid operation condition (see page 52) is 
raised and the result is [0,qNaN], or if both are infinite then the result is the first operand. 

Otherwise (both operands are finite), quantize returns the number which is equal in value (except for 
any rounding) and sign to the first (left-hand) operand and which has an exponent set to be equal to the 
exponent of the second (right-hand) operand. 

The coefficient of the result is derived from that of the left-hand operand.  It may be rounded using the 
current rounding setting (if the exponent is being increased), multiplied by a positive power of ten (if the 
exponent is being decreased), or is unchanged (if the exponent is already equal to that of the right-hand 
operand). 

Unlike other operations, if the length of the coefficient after the quantize operation would be greater 
than precision then an Invalid operation condition is raised. This guarantees that, unless there is an error 
condition, the exponent of the result of a quantize is always equal to that of the right-hand operand. 

Also unlike other operations, quantize will never raise Underflow, even if the result is subnormal and 
inexact. 
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Examples: 
quantize('2.17', '0.001')        ==>  '2.170'
quantize('2.17', '0.01')         ==>  '2.17'
quantize('2.17', '0.1')          ==>  '2.2'
quantize('2.17', '1e+0')         ==>  '2'
quantize('2.17', '1e+1')         ==>  '0E+1'
quantize('-Inf'  'Infinity')     ==>  '-Infinity'
quantize('2',    'Infinity')     ==>  'NaN'
quantize('-0.1', '1'  )          ==>  '-0'
quantize('-0',   '1e+5')         ==>  '-0E+5'
quantize('+35236450.6', '1e-2')  ==>  'NaN'
quantize('-35236450.6', '1e-2')  ==>  'NaN'
quantize('217',  '1e-1')         ==>  '217.0'
quantize('217',  '1e+0')         ==>  '217'
quantize('217',  '1e+1')         ==>  '2.2E+2'
quantize('217',  '1e+2')         ==>  '2E+2' 

Notes: 
1. In the penultimate example the result is [0,22,1], leading to the string in scientific notation as 

shown. 

2. This operation was previously called rescale, which had identical semantics except that the 
second operand specified the power of ten of the quantum.  The quantize semantics specifies 
the desired quantum by example, which allows a faster implementation in most cases. 

3. The sign and coefficient of the second operand are ignored; this allows a “match the quantum of 
a variable” operation to be effected directly. 

reduce
reduce takes one operand. It has the same semantics as the plus operation, except that if the final 
result is finite it is reduced to its simplest form, with all trailing zeros removed and its sign preserved. 

That is, while the coefficient is non-zero and a multiple of ten the coefficient is divided by ten and the 
exponent is incremented by 1. Otherwise (the coefficient is zero) the exponent is set to 0. In all cases the 
sign is unchanged. 

Examples: 
reduce('2.1')     ==>  '2.1'
reduce('-2.0')    ==>  '-2'
reduce('1.200')   ==>  '1.2'
reduce('-120')    ==>  '-1.2E+2'
reduce('120.00')  ==>  '1.2E+2'
reduce('0.00')    ==>  '0' 

This operation was called normalize prior to version 1.68 of this specification. 

remainder
remainder takes two operands; it returns the remainder from integer division. If either operand is a 
special value then the general rules apply. 

Otherwise, the result is the residue of the dividend after the operation of calculating integer division as 
described for divide-integer, rounded to precision digits if necessary. The sign of the result, if non-
zero, is the same as that of the original dividend. 
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This operation will fail under the same conditions as integer division (that is, if integer division on the 
same two operands would fail, the remainder cannot be calculated). 

Examples: 
remainder('2.1', '3')    ==>  '2.1'
remainder('10', '3')     ==>  '1'
remainder('-10', '3')    ==>  '-1'
remainder('10.2', '1')   ==>  '0.2'
remainder('10', '0.3')   ==>  '0.1'
remainder('3.6', '1.3')  ==>  '1.0' 

Notes: 
1. The divide-integer and remainder operations are defined so that they may be calculated as a by-

product of the standard division operation (described above).  The division process is ended as 
soon as the integer result is available; the residue of the dividend is the remainder. 

2. The sign of the result will always be sign of the dividend. 

3. The remainder operation differs from the remainder operation defined in IEEE 754 (the 
remainder-near operator), in that it gives the same results for numbers whose values are equal 
to integers as would the usual remainder operator on integers. 

For example, the result of the operation remainder(’10’, ’6’) as defined here is ’4’, and 
remainder(’10.0’, ’6’) would give ’4.0’ (as would remainder(’10’, ’6.0’) or 
remainder(’10.0’, ’6.0’)).  The IEEE 754 remainder operation would, however, give the 
result ’-2’ because its integer division step chooses the closest integer, not the one nearer zero. 

remainder-near
remainder-near takes two operands. If either operand is a special value then the general rules apply. 

Otherwise, if the operands are given by x and y, then the result is defined to be x - y × n, where n is the 
integer nearest the exact value of x ÷ y (if two integers are equally near then the even one is chosen). 
If the result is equal to 0 then its sign will be the sign of x. (See IEEE 754 §5.3.1.) 

This operation will fail under the same conditions as integer division (that is, if integer division on the 
same two operands would fail, the remainder cannot be calculated), except when the quotient is very 
close to 10 raised to the power of the precision.33 

Examples: 
remainder-near('2.1', '3')    ==>  '-0.9'
remainder-near('10', '6')     ==>  '-2'
remainder-near('10', '3')     ==>  '1'
remainder-near('-10', '3')    ==>  '-1'
remainder-near('10.2', '1')   ==>  '0.2'
remainder-near('10', '0.3')   ==>  '0.1'
remainder-near('3.6', '1.3')  ==>  '-0.3' 

Notes: 
1. The remainder-near operation differs from the remainder operation in that it does not give the 

same results for numbers whose values are equal to integers as would the usual remainder 
operator on integers. For example, the operation remainder(’10’, ’6’) gives the result 

33 This is a deviation from IEEE 754, necessary to assure realistic execution times when the operands have a wide range of 
exponents. 
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’4’, and remainder(’10.0’, ’6’) gives ’4.0’ (as would the operations 
remainder(’10’, ’6.0’) or remainder(’10.0’, ’6.0’)). However, remainder-
near(’10’, ’6’) gives the result ’-2’ because its integer division step chooses the closest 
integer, not the one nearer zero. 

2. The result of this operation is always exact. 

3. This operation is sometimes known as “IEEE remainder”. 

round-to-integral-exact
round-to-integral-exact takes one operand. If the operand is a special value, or the exponent of the 
operand is non-negative, then the result is the same as the operand (unless the operand is a signaling 
NaN, as usual). 

Otherwise (the operand has a negative exponent) the result is the same as using the quantize operation 
using the given operand as the left-hand-operand, 1E+0 as the right-hand-operand, and the precision of 
the operand as the precision setting. The rounding mode is taken from the context, as usual. 

Examples: 
round-to-integral-exact('2.1')      ==>  '2'
round-to-integral-exact('100')      ==>  '100'
round-to-integral-exact('100.0')    ==>  '100'
round-to-integral-exact('101.5')    ==>  '102'
round-to-integral-exact('-101.5')   ==>  '-102'
round-to-integral-exact('10E+5')    ==>  '1.0E+6'
round-to-integral-exact('7.89E+77') ==>  '7.89E+77'
round-to-integral-exact('-Inf')     ==>  '-Infinity' 

round-to-integral-value
round-to-integral-value takes one operand. It is identical to the round-to-integral-exact operation 
except that the Inexact and Rounded flags are never set even if the operand is rounded (that is, the 
operation is quiet unless the operand is a signaling NaN). 

square-root
square-root takes one operand. If the operand is a special value then the general rules apply. 

Otherwise, the ideal exponent of the result is defined to be half the exponent of the operand (rounded 
to an integer, towards -Infinity,34 if necessary) and then: 

• If the operand is less than zero an Invalid operation condition is raised. 

• If the operand is greater than zero, the result is the square root of the operand.  If no rounding is 
necessary (the exact result requires precision digits or fewer) then the the coefficient and 
exponent giving the correct value and with the exponent closest to the ideal exponent is used. If 
the result must be inexact, it is rounded using the round-half-even algorithm and the coefficient 
will have exactly precision digits (unless the result is subnormal), and the exponent will be set to 

34 This rule matches the typical implementations.  For example, the square-root of either [0,10,-1] or [0,11,-1] 
is often calculated by first multiplying the coefficient by ten and reducing the exponent by 1 and then determining the 
square root. If the exponent is held as a two’s complement binary number, the ideal exponent is trivially calculated by 
applying an arithmetic right shift of one bit. 
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maintain the correct value. 

• Otherwise (the operand is equal to zero), the result will be the zero with the same sign as the 
operand and with the ideal exponent. 

Examples: 
square-root('0')     ==> '0'
square-root('-0')    ==> '-0'
square-root('0.39')  ==> '0.62449980'
square-root('100')   ==> '10'
square-root('1')     ==> '1'
square-root('1.0')   ==> '1.0'
square-root('1.00')  ==> '1.0'
square-root('7')     ==> '2.64575131'
square-root('10')    ==> '3.16227766' 

Notes: 
1. The rounding setting in the context is not used; this means that the algorithm described in 

Properly Rounded Variable Precision Square Root by T. E. Hull and A. Abrham (ACM 
Transactions on Mathematical Software, Vol 11 #3, pp229–237, ACM, September 1985) may be 
used for this operation. 

2. A subnormal result is only possible if the working precision is greater than Emax+1. 

3. The rules for setting the exponent of the result apply to many operations; they can be used for 
any operation for which an ideal exponent can be defined. 

4. A negative zero is allowed as an operand as per IEEE 754 §5.4.1. 

5. Square-root can also be calculated by using the power (see page 35) operation (with a second 
operand of 0.5).  The result in that case will not be exact in most cases, and may not be correctly 
rounded.35 

35 This is because a typical implementation of power(x,y) will calculate its result using exp(ln(x)*y), and few results of the 
exp function are exact. 
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Miscellaneous operations

This section describes miscellaneous operations on decimal numbers, including non-numeric 
comparisons, sign and other manipulations, and logical operations. 

The logical operations (and, invert, or, and xor) take logical operands, which are finite numbers with a 
sign of 0, an exponent of 0, and a coefficient whose digits must all be either 0 or 1.36 The length of the 
result will be at most precision digits (all of which will be either 0 or 1); operands are truncated on the 
left or padded with zeros on the left as necessary.  The result of a logical operation is never rounded 
and the only flag that might be set is invalid-operation (set if an operand is not a valid logical operand). 

Notes: 
1. This section uses the simplified notation introduced in the previous section to illustrate 

operations. 

2. It is possible to express the results of all these operations as a decimal number or string, but for 
some implementations other types may be available and might be more efficient.37 If an 
implementation does return types which are not decimal numbers or strings then there must also 
be conversion operations provided to convert from those types to decimal values or strings, so a 
wholly decimal usage is possible. 

3. As in the previous section, for any examples below, the context (where relevant) is assumed to 
have precision set to 9, rounding set to round-half-up, and all trap-enablers set to 0. 

and
and is a logical operation which takes two logical operands (see above). The result is the digit-wise 
and of the two operands; each digit of the result is the logical and of the corresponding digits of the 
operands, aligned at the least-significant digit. A result digit is 1 if both of the corresponding operand 
digits are 1; otherwise it is 0. 

Examples: 
and('0', '0')        ==>  '0'
and('0', '1')        ==>  '0'
and('1', '0')        ==>  '0'
and('1', '1')        ==>  '1'
and('1100', '1010')  ==>  '1000'
and('1111', '10')    ==>  '10' 

36 This digit-wise representation of bits in a decimal representation has been used since the 1950s; see, for example, Binary 
and truth-function operations on a decimal computer with an extract command, William H. Kautz, Communications of 
the ACM, Vol. 1 #5, pp12-13, ACM Press, May 1958. 

37 For example, the operations which test whether a value is in a particular class might return a boolean. 
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canonical
canonical takes one operand.  The result has the same value as the operand but always uses a 
canonical encoding. The definition of canonical is implementation-defined; if more than one internal 
encoding for a given NaN, Infinity, or finite number is possible then one “preferred” encoding is 
deemed canonical.  This operation then returns the value using that preferred encoding. 

If all possible operands have just one internal encoding each, then canonical always returns the 
operand unchanged (that is, it has the same effect as copy). This operation is unaffected by context 
and is quiet – no flags are changed in the context. 

Example: 
canonical('2.50')  ==>  '2.50' 

class
class takes one operand.  The result is an indication of the class of the operand, where the class is one 
of ten possibilities, corresponding to one of the strings "sNaN" (signaling NaN), "NaN" (quiet NaN), 
"-Infinity" (negative infinity), "-Normal" (negative normal finite number), "-Subnormal" 
(negative subnormal finite number), "-Zero" (negative zero), "+Zero" (non-negative zero), 
"+Subnormal" (positive subnormal finite number), "+Normal" (positive normal finite number), or 
"+Infinity" (positive infinity). This operation is quiet; no flags are changed in the context. 

Implementations may indicate the class using a more easily tested representation than a string (for 
example, an integer or an enumeration), but in this case a mechanism for converting that 
representation to the corresponding class string listed above must be provided. 

Finite numbers can only be classified as subnormal (see page 11) if the exponent range is limited (that 
is, there is a known value for Emin). In the following examples, Emin is assumed to be -999. 

Examples: 
class('Infinity')   ==>  "+Infinity"
class('1E-10')      ==>  "+Normal"
class('2.50')       ==>  "+Normal"
class('0.1E-999')   ==>  "+Subnormal"
class('0')          ==>  "+Zero"
class('-0')         ==>  "-Zero"
class('-0.1E-999')  ==>  "-Subnormal"
class('-1E-10')     ==>  "-Normal"
class('-2.50')      ==>  "-Normal"
class('-Infinity')  ==>  "-Infinity"
class('NaN')        ==>  "NaN"
class('-NaN')       ==>  "NaN"
class('sNaN')       ==>  "sNaN" 

Note that unlike the special values in the model, the sign of any NaN is ignored in the classification, as 
required by IEEE 754. 

compare-total
compare-total takes two operands and compares them using their abstract representation rather than 
their numerical value. A total ordering is defined for all possible abstract representations, as described 
below.  If the first operand is lower in the total order than the second operand then the result is ’-1’, 
if the operands have the same abstract representation then the result is ’0’, and if the first operand is 
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higher in the total order than the second operand then the result is ’1’. 

The total ordering is defined as follows. 

1. The following items describe the ordering for representations whose sign is 0.  If the sign is 1, 
the order is reversed. A representation with a sign of 1 is always lower in the ordering than one 
with a sign of 0. 

2. Numbers (representations which are not NaNs) are ordered such that a larger numerical value is 
higher in the ordering.  If two representations have the same numerical value then the exponent 
is taken into account; larger (more positive) exponents are higher in the ordering. 

3. All quiet NaNs are higher in the total ordering than all signaling NaNs. 

4. Quiet NaNs and signaling NaNs are ordered according to their payload; a larger payload is 
higher in the ordering. 

For example, the following values are ordered from lowest to highest: -NaN -sNaN -Infinity 
-127 -1.00 -1 -0.000 -0 0 1.2300 1.23 1E+9 Infinity sNaN NaN NaN456. 

Examples: 
compare-total('12.73', '127.9')   ==>  '-1'
compare-total('-127',  '12')      ==>  '-1'
compare-total('12.30', '12.3')    ==>  '-1'
compare-total('12.30', '12.30')   ==>  '0'
compare-total('12.3',  '12.300')  ==>  '1'
compare-total('12.3',  'NaN')     ==>  '-1' 

Notes: 
1. The result of compare-total is always finite, exact, and unrounded. 

2. The compare operation (see page 27) can be used when a numerical comparison of values is 
required. 

compare-total-magnitude
compare-total-magnitude takes two operands and compares them using their abstract representation 
rather than their numerical value and with their sign ignored and assumed to be 0.  The result is 
identical to that obtained by using compare-total on two operands which are the copy-abs copies of 
the operands to compare-total-magnitude; that is: 

compare-total-magnitude(x, y) 

is given by 
compare-total(copy-abs(x), copy-abs(y)) 

copy
copy takes one operand.  The result is a copy of the operand.  This operation is unaffected by context 
and is quiet – no flags are changed in the context. 

Examples: 
copy('2.1')    ==>  '2.1'
copy('-1.00')  ==>  '-1.00' 
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copy-abs
copy-abs takes one operand.   The result is a copy of the operand with the sign set to 0. Unlike the abs 
operation (see page 26), this operation is unaffected by context and is quiet – no flags are changed in 
the context. 

Examples: 
copy-abs('2.1')   ==>  '2.1'
copy-abs('-100')  ==>  '100' 

copy-negate
copy-negate takes one operand.   The result is a copy of the operand with the sign inverted (a sign of 0 
becomes 1 and vice versa). Unlike the minus operation (see page 33), this operation is unaffected by 
context and is quiet – no flags are changed in the context. 

Examples: 
copy-negate('101.5')   ==>  '-101.5'
copy-negate('-101.5')  ==>  '101.5' 

copy-sign
copy-sign takes two operands.   The result is a copy of the first operand with the sign set to be the 
same as the sign of the second operand. This operation is unaffected by context and is quiet – no flags 
are changed in the context. 

Examples: 
copy-sign( '1.50',  '7.33')  ==>  '1.50'
copy-sign('-1.50',  '7.33')  ==>  '1.50'
copy-sign( '1.50', '-7.33')  ==>  '-1.50'
copy-sign('-1.50', '-7.33')  ==>  '-1.50' 

invert
invert is a logical operation which takes one logical operand (see above). The result is the digit-wise 
inversion of the operand; each digit of the result is the inverse of the corresponding digit of the operand. 
A result digit is 1 if the corresponding operand digit is 0; otherwise it is 0. 

Examples: 
invert('0')          ==>  '111111111'
invert('1')          ==>  '111111110'
invert('111111111')  ==>  '0'
invert('101010101')  ==>  '10101010' 

is-canonical
is-canonical takes one operand.  The result is 1 if the operand is canonical; otherwise it is 0. The 
definition of canonical is implementation-defined; if more than one internal encoding for a given NaN, 
Infinity, or finite number is possible then one “preferred” encoding is deemed canonical.  This 
operation then tests whether the internal encoding is that preferred encoding. 

If all possible operands have just one internal encoding each, then is-canonical always returns 1. This 
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operation is unaffected by context and is quiet – no flags are changed in the context. 

Example: 
is-canonical('2.50')  ==>  '1' 

is-finite
is-finite takes one operand.  The result is 1 if the operand is neither infinite nor a NaN (that is, it is a 
normal number, a subnormal number, or a zero); otherwise it is 0. This operation is unaffected by 
context and is quiet – no flags are changed in the context. 

Examples: 
is-finite('2.50')  ==>  '1'
is-finite('-0.3')  ==>  '1'
is-finite('0')     ==>  '1'
is-finite('Inf')   ==>  '0'
is-finite('NaN')   ==>  '0' 

is-infinite
is-infinite takes one operand.  The result is 1 if the operand is an Infinity; otherwise it is 0. This 
operation is unaffected by context and is quiet – no flags are changed in the context. 

Examples: 
is-infinite('2.50')  ==>  '0'
is-infinite('-Inf')  ==>  '1'
is-infinite('NaN')   ==>  '0' 

is-NaN
is-NaN takes one operand.  The result is 1 if the operand is a NaN (quiet or signaling); otherwise it is 
0. This operation is unaffected by context and is quiet – no flags are changed in the context. 

Examples: 
is-NaN('2.50')   ==>  '0'
is-NaN('NaN')    ==>  '1'
is-NaN('-sNaN')  ==>  '1' 

is-normal
is-normal takes one operand.  The result is 1 if the operand is a positive or negative normal number (see 
page 11); otherwise it is 0. This operation is quiet; no flags are changed in the context. 

Finite numbers can only be classified as normal or subnormal if the exponent range is limited (that is, 
there is a known value for Emin); if Emin is unknown, 1 is returned.  In the following examples, Emin is 
assumed to be -999. 

Examples: 
is-normal('2.50')      ==>  '1'
is-normal('0.1E-999')  ==>  '0'
is-normal('0.00')      ==>  '0'
is-normal('-Inf')      ==>  '0'
is-normal('NaN')       ==>  '0' 
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is-qNaN
is-qNaN takes one operand.  The result is 1 if the operand is a quiet NaN; otherwise it is 0. This 
operation is unaffected by context and is quiet – no flags are changed in the context. 

Examples: 
is-qNaN('2.50')  ==>  '0'
is-qNaN('NaN')   ==>  '1'
is-qNaN('sNaN')  ==>  '0' 

is-signed
is-signed takes one operand.  The result is 1 if the sign of the operand is 1; otherwise it is 0. This 
operation is unaffected by context and is quiet – no flags are changed in the context. 

Examples: 
is-signed('2.50')  ==>  '0'
is-signed('-12')   ==>  '1'
is-signed('-0')    ==>  '1' 

is-sNaN
is-sNaN takes one operand.  The result is 1 if the operand is a signaling NaN; otherwise it is 0. This 
operation is unaffected by context and is quiet – no flags are changed in the context. 

Examples: 
is-sNaN('2.50')  ==>  '0'
is-sNaN('NaN')   ==>  '0'
is-sNaN('sNaN')  ==>  '1' 

is-subnormal
is-subnormal takes one operand.  The result is 1 if the operand is a positive or negative subnormal 
number (see page 11); otherwise it is 0. This operation is quiet; no flags are changed in the context. 

Finite numbers can only be classified as normal or subnormal if the exponent range is limited (that is, 
there is a known value for Emin); if Emin is unknown, 0 is returned.  In the following examples, Emin is 
assumed to be -999. 

Examples: 
is-subnormal('2.50')      ==>  '0'
is-subnormal('0.1E-999')  ==>  '1'
is-subnormal('0.00')      ==>  '0'
is-subnormal('-Inf')      ==>  '0'
is-subnormal('NaN')       ==>  '0' 

is-zero
is-zero takes one operand.  The result is 1 if the operand is a zero; otherwise it is 0. This operation is 
unaffected by context and is quiet – no flags are changed in the context. 
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Examples: 
is-zero('0')      ==>  '1'
is-zero('2.50')   ==>  '0'
is-zero('-0E+2')  ==>  '1' 

logb
logb takes one operand.  If the operand is a NaN then the general arithmetic rules apply.  If the 
operand is infinite then +Infinity is returned.  If the operand is a zero, then -Infinity is returned and the 
Division by zero exceptional condition (see page 51) is raised. 

Otherwise, the result is the integer which is the exponent of the magnitude of the most significant digit 
of the operand (as though the operand were truncated to a single digit while maintaining the value of 
that digit and without limiting the resulting exponent). All results are exact unless an integer result 
does not fit in the available precision. 

Examples: 
logb('250')   ==>  '2'
logb('2.50')  ==>  '0'
logb('0.03')  ==>  '-2'
logb('0')     ==>  '-Infinity' 

Note: The scaleb operation (see page 48) can be used to change the exponent of a number. 

or
or is a logical operation which takes two logical operands (see above). The result is the digit-wise 
inclusive or of the two operands; each digit of the result is the logical or of the corresponding digits of 
the operands, aligned at the least-significant digit. A result digit is 1 if either or both of the 
corresponding operand digits is 1; otherwise it is 0. 

Examples: 
or('0', '0')        ==>  '0'
or('0', '1')        ==>  '1'
or('1', '0')        ==>  '1'
or('1', '1')        ==>  '1'
or('1100', '1010')  ==>  '1110'
or('1110', '10')    ==>  '1110' 

radix
radix takes no operands.  The result is the radix (base) in which arithmetic is effected; for this 
specification the result will have the value 10.38 

Example: 
radix()  ==>  '10' 

rotate
rotate takes two operands.  The second operand must be an integer (with an exponent of 0) in the range 
-precision through precision.  If the first operand is a NaN then the general arithmetic rules apply, and if 

38 This might be 1E+1 in the extraordinary case of precision=1. 
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it is infinite then the result is the Infinity unchanged. 

Otherwise (the first operand is finite) the result has the same sign and exponent as the first operand, and 
a coefficient which is a rotated copy of the digits in the coefficient of the first operand. The number of 
places of rotation is taken from the absolute value of the second operand, with the rotation being to the 
left if the second operand is positive or to the right otherwise. 

If the coefficient of the first operand has fewer than precision digits, it is treated as though it were 
padded on the left with zeros to length precision before the rotation. Similarly, if the coefficient of the 
first operand has more than precision digits, it is truncated on the left before use. 

The only flag that might be set is invalid-operation (set if the first operand is an sNaN or the second is not 
valid). 

Examples: 
rotate('34', '8')          ==>  '400000003'
rotate('12', '9')          ==>  '12'
rotate('123456789', '-2')  ==>  '891234567'
rotate('123456789', '0')   ==>  '123456789'
rotate('123456789', '+2')  ==>  '345678912' 

The shift operation (see page 49) can be used to shift rather than rotate a coefficient. 

same-quantum
same-quantum takes two operands, and returns 1 if the two operands have the same exponent or 0 
otherwise. The result is never affected by either the sign or the coefficient of either operand. 

If either operand is a special value, 1 is returned only if both operands are NaNs or both are infinities. 

same-quantum does not change any flags in the context. Implementations which support the concept 
of a boolean type may return true for 1 and false for 0. 

Examples: 
samequantum('2.17', '0.001')  ==>  '0'
samequantum('2.17', '0.01')   ==>  '1'
samequantum('2.17', '0.1')    ==>  '0'
samequantum('2.17', '1')      ==>  '0'
samequantum('Inf', '-Inf')    ==>  '1'
samequantum('NaN', 'NaN')     ==>  '1' 

scaleb
scaleb takes two operands.  If either operand is a NaN then the general arithmetic rules apply. 
Otherwise, the second operand must be a finite integer with an exponent of zero39 and in the range 
±2 × (Emax + precision) inclusive, where Emax is the largest value that can be returned by the logb 
operation (see page 47) at the same precision setting.40 (If is is not, the Invalid Operation condition is 
raised and the result is NaN.) 

If the first operand is infinite then that Infinity is returned, otherwise the result is the first operand 
modified by adding the value of the second operand to its exponent.  The result may Overflow or 
Underflow. 

39 Strictly speaking this is more restrictive that IEEE 754, which would allow 1E+1 for the second operand; however, it is in 
the spirit of IEEE 754 also permitting that the second operand be specifiable as an integer. 

40 This Emax is the same as that described in IEEE 754. 
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Examples: 
scaleb('7.50', '-2')  ==>  '0.0750'
scaleb('7.50', '0')   ==>  '7.50'
scaleb('7.50', '3')   ==>  '7.50E+3' 

shift
shift takes two operands.  The second operand must be an integer (with an exponent of 0) in the range 
-precision through precision.  If the first operand is a NaN then the general arithmetic rules apply, and if 
it is infinite then the result is the Infinity unchanged. 

Otherwise (the first operand is finite) the result has the same sign and exponent as the first operand, and 
a coefficient which is a shifted copy of the digits in the coefficient of the first operand.  The number of 
places to shift is taken from the absolute value of the second operand, with the shift being to the left if 
the second operand is positive or to the right otherwise. Digits shifted into the coefficient are zeros. 

The only flag that might be set is invalid-operation (set if the first operand is an sNaN or the second is not 
valid). 

Examples: 
shift('34', '8')          ==>  '400000000'
shift('12', '9')          ==>  '0'
shift('123456789', '-2')  ==>  '1234567'
shift('123456789', '0')   ==>  '123456789'
shift('123456789', '+2')  ==>  '345678900' 

The rotate operation (see page 47) can be used to rotate rather than shift a coefficient. 

xor
xor is a logical operation which takes two logical operands (see above). The result is the digit-wise 
exclusive or of the two operands; each digit of the result is the logical exclusive-or of the corresponding 
digits of the operands, aligned at the least-significant digit. A result digit is 1 if one of the 
corresponding operand digits is 1 and the other is 0; otherwise it is 0. 

Examples: 
xor('0', '0')        ==>  '0'
xor('0', '1')        ==>  '1'
xor('1', '0')        ==>  '1'
xor('1', '1')        ==>  '0'
xor('1100', '1010')  ==>  '110'
xor('1111', '10')    ==>  '1101' 
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Exceptional conditions

This section lists, in the abstract, the exceptional conditions that may arise during the operations 
defined in this specification. 

For each condition, the corresponding signal in the context (see page 13) is given, along with the 
defined result. The value of the trap-enabler for each signal in the context determines whether an 
operation is completed after the condition is detected or whether the condition is trapped and hence not 
necessarily completed (see IEEE 754 §7 and §8). 

This specification does not define the manner in which exceptions are reported or handled. For 
example, in a object-oriented language, an Arithmetic Exception object might be signalled or thrown, 
whereas in a calculator application an error message or other indication might be displayed. 

The following exceptional conditions can occur: 
Clamped This occurs and signals clamped if the exponent of a result has been altered in order to 

fit the constraints of a specific concrete representation.  This may occur when the 
exponent of a zero result would be outside the bounds of a representation, or (in the 
IEEE 754 interchange formats) when a large normal number would have an encoded 
exponent that cannot be represented.  In this latter case, the exponent is reduced to fit 
and the corresponding number of zero digits are appended to the coefficient (“fold-
down”). The condition always occurs when a subnormal value rounds to zero. 

Conversion 
syntax 

This occurs and signals invalid-operation if a string is being converted to a number and it 
does not conform to the numeric string syntax (see page 17). The result is [0,qNaN]. 

Division by 
zero 

This occurs and signals division-by-zero if division of a finite number by zero was 
attempted (during a divide-integer or divide operation, or a power operation with 
negative right-hand operand), and the dividend was not zero. 

The result of the operation is [sign,inf], where sign is the exclusive or of the signs 
of the operands for divide, or is 1 for an odd power of -0, for power. 

Division 
impossible 

This occurs and signals invalid-operation if the integer result of a divide-integer or 
remainder operation had too many digits (would be longer than precision). The result 
is [0,qNaN]. 

Division 
undefined 

This occurs and signals invalid-operation if division by zero was attempted (during a 
divide-integer, divide, or remainder operation), and the dividend is also zero. The 
result is [0,qNaN]. 
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Inexact This occurs and signals inexact whenever the result of an operation is not exact (that is, 
it needed to be rounded and any discarded digits were non-zero), or if an overflow or 
underflow condition occurs. The result in all cases is unchanged. 

The inexact signal may be tested (or trapped) to determine if a given operation (or 
sequence of operations) was inexact.41 

Insufficient 
storage 

For many implementations, storage is needed for calculations and intermediate results, 
and on occasion an arithmetic operation may fail due to lack of storage.  This is 
considered an operating environment error, which can be either be handled as 
appropriate for the environment, or treated as an Invalid operation condition. The 
result is [0,qNaN]. 

Invalid 
context  

This occurs and signals invalid-operation if an invalid context was detected during an 
operation.  This can occur if contexts are not checked on creation and either the 
precision exceeds the capability of the underlying concrete representation or an 
unknown or unsupported rounding was specified.  These aspects of the context need 
only be checked when the values are required to be used. The result is [0,qNaN]. 

Invalid 
operation 

This occurs and signals invalid-operation if: 

• an operand to an operation is [s,sNaN] or [s,sNaN,d] (any signaling NaN) 

• an attempt is made to add [0,inf] to [1,inf] during an addition or 
subtraction operation 

• an attempt is made to multiply 0 by [0,inf] or [1,inf] 

• an attempt is made to divide either [0,inf] or [1,inf] by either [0,inf] or 
[1,inf] 

• the divisor for a remainder operation is zero 

• the dividend for a remainder operation is either [0,inf] or [1,inf] 

• either operand of the quantize operation is infinite, or the result of a quantize 
operation would require greater precision than is available 

• the operand of the ln or the log10 operation is less than zero 

• the operand of the square-root operation has a sign of 1 and a non-zero 
coefficient 

• both operands of the power operation are zero, or if the left-hand operand is 
less than zero and the right-hand operand does not have an integral value or is 
infinite 

• an operand is invalid; for example, certain values of concrete representations 
may not correspond to numbers – an implementation is permitted (but is not 
required) to detect these invalid values and raise this condition. 

The result of the operation after any of these invalid operations is [0,qNaN] except 
when the cause is a signaling NaN, in which case the result is [s,qNaN] or 

41 Note that IEEE 854 is inconsistent in its treatment of Inexact in that it states in §7 that the Inexact exception can coincide 
with Underflow, but does not allow the possibility of Underflow signaling Inexact in §7.5.  It is assumed that the latter is 
an accidental omission. 
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[s,qNaN,d] where the sign and diagnostic are copied from the signaling NaN. 

Overflow This occurs and signals overflow if the adjusted exponent of a result (from a conversion 
or from an operation that is not an attempt to divide by zero), after rounding, would be 
greater than the largest value that can be handled by the implementation (the value 
Emax). 

The result depends on the rounding mode: 

• For round-half-up and round-half-even (and for round-half-down and round-up, if 
implemented), the result of the operation is [sign,inf], where sign is the sign 
of the intermediate result. 

• For round-down, (and round-05up, if implemented), the result is the largest finite 
number that can be represented in the current precision, with the sign of the 
intermediate result. 

• For round-ceiling, the result is the same as for round-down if the sign of the 
intermediate result is 1, or is [0,inf] otherwise. 

• For round-floor, the result is the same as for round-down if the sign of the 
intermediate result is 0, or is [1,inf] otherwise. 

In all cases, Inexact and Rounded will also be raised. 

Note: IEEE 854 §7.3 requires that the result delivered to a trap handler be different, 
depending on whether the overflow was the result of a conversion or of an arithmetic 
operation.  This specification deviates from IEEE 854 in this respect; however, an 
implementation could comply with IEEE 854 by providing a separate mechanism for 
the special result to a trap handler.  IEEE 754 has no such requirement. 

Rounded This occurs and signals rounded whenever the result of an operation is rounded (that is, 
some zero or non-zero digits were discarded from the coefficient), or if an overflow or 
underflow condition occurs.  The result in all cases is unchanged. 

The rounded signal may be tested (or trapped) to determine if a given operation (or 
sequence of operations) caused a loss of precision. 

Subnormal This occurs and signals subnormal whenever the result of a conversion or operation is 
subnormal (that is, its adjusted exponent is less than Emin, before any rounding). The 
result in all cases is unchanged. 

The subnormal signal may be tested (or trapped) to determine if a given or operation 
(or sequence of operations) yielded a subnormal result. 

Underflow This occurs and signals underflow if a result is inexact and the adjusted exponent of the 
result would be smaller (more negative) than the smallest value that can be handled by 
the implementation (the value Emin).  That is, the result is both inexact and 
subnormal.42 

The result after an underflow will be a subnormal number rounded, if necessary, so 
that its exponent is not less than Etiny.  This may result in 0 with the sign of the 
intermediate result and an exponent of Etiny. 

In all cases, Inexact, Rounded, and Subnormal will also be raised. 

42 See IEEE 754 §7.5. 
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Note: IEEE 854 §7.4 requires that the result delivered to a trap handler be different, 
depending on whether the underflow was the result of a conversion or of an arithmetic 
operation. This specification deviates from IEEE 854 in this respect; however, an 
implementation could comply with IEEE 854 by providing a separate mechanism for 
the result to a trap handler. IEEE 754 has no such requirement. 

It is recommended that implementations distinguish the different conditions listed above, and also 
provide additional information about exceptional conditions where possible (for example, the 
operation being attempted and the values of the operand or operands involved – see also IEEE 754 
§8). 

Precedence of exceptions

The Clamped, Inexact, Rounded, and Subnormal conditions can coincide with each other or with other 
conditions.  In these cases then any trap enabled for another condition takes precedence over (is 
handled before) all of these, any Subnormal trap takes precedence over Inexact, any Inexact trap takes 
precedence over Rounded, and any Rounded trap takes precedence over Clamped. 
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Appendix A – The X3.274 subset

The full specification in the body of this document defines a decimal floating-point arithmetic which 
gives exact results and preserves exponents where possible.  If insufficient precision is available for 
this, then numbers are handled according to the rules of IEEE 854.  The use of IEEE 854 rules implies 
that special values (infinities and NaNs) are allowed, as subnormal values and the value -0. 

For some applications and programming languages (especially those intended for use by people who 
are not mathematically sophisticated), it may be appropriate to provide an arithmetic where infinite, 
NaN, or subnormal results are always treated as errors, -0 results are hidden, and other (largely 
cosmetic) changes are provided to aid acceptance of results. 

The arithmetic defined in ANSI X3.274 is such an arithmetic; this appendix describes the differences 
between this and the full specification. Implementations which support this subset explicitly might 
provide the subset behavior under the control of a parameter in the context43 or might provide a 
different interface (additional or parameterized methods, for example). 

Simplified number set

In the subset arithmetic, a reduced set of number values is supported and (where appropriate) numbers 
with positive exponents have their exponent reduced to zero. Specifically: 

• In the to-number conversion, if the coefficient for a finite number has the value zero, then the 
sign and the exponent are both set to 0. 

• If the coefficient in a result has the value zero, then the sign is set to 0 and (unless the operation is 
quantize) the exponent is set to 0.44 

• In the to-number conversion, strings which represent special values are not permitted.  (That is, 
only finite numbers are accepted.) 

• Subnormal numbers are not permitted.  If the result from a conversion or operation would be 
subnormal then an Underflow error results (see below). 

• After any operation and the rounding of its result (unless the operation is quantize), a result 
with a positive exponent is converted to an integer provided that the resulting coefficient would 
have no more than precision digits. In other words, in this case a positive exponent is reduced to 
0 by multiplying the coefficient by 10exponent (which has the effect of suffixing exponent zeros).45 

43 The decNumber package, for example, provides the subset behavior if the extended bit is set to 0. 
44 This rule, together with the to-number definition, ensures that numbers with values such as -0 or 0.0000 will not 

result from general operations in the subset arithmetic. This allows a concrete representation for the subset to comprise 
simply two integers in two’s complement form. 

45 The underlying intent here is that positive exponents in the operands are reduced to zero before the operation, so that all 
operations take place on numbers that could be expressed as “plain” decimal numbers with no exponent.  The rule is 

Version 1.70 Appendix A – The X3.274 subset 55



Operation differences

In the subset arithmetic, operands are rounded before use if necessary (as in Numerical Turing46 and 
Rexx), the Lost digits condition is added to the context, the results of some operations are trimmed, the 
rounding rule after a subtraction is less conservative, and raising 0 to the power 0 is not treated as an 
error. Specifically: 

• If the number of decimal digits in the coefficient of an operand to an operation is greater than the 
current precision in the context then the operand is rounded to precision significant digits using 
the rounding algorithm described by the context before being used in the computation. In other 
words, an automatic “convert to shorter” is applied before the operation. 

• During an add or subtract operation, if either number is zero then the other number, rounded to 
precision if necessary, is used as the result (with sign adjustment as appropriate).47 

• The Lost digits condition is added to the abstract context; it should be set to 0 in default 
contexts. 

This condition is raised when non-zero digits are discarded before an operation.  This can occur 
when an operand which has more leading significant digits in its coefficient than the precision 
setting is rounded to precision digits before use 

Note that the lost digits test does not treat trailing decimal zeros in the coefficient as significant. 
For example, if precision had the value 5, then the operands 
[0,12345,-5]
[0,12345,-2]
[0,12345,0]
[1,12345,0]
[0,123450000,-4]
[0,1234500000,0] 

would not cause an exception (whereas [0,123451,-1] or [0,1234500001,0] would). 

• After a divide or power operation is complete and the result has been rounded, any insignificant 
trailing zeros are removed. That is, if the exponent is not zero and the coefficient is a multiple of a 
positive power of ten then the coefficient is divided by that power of ten and the exponent 
increased accordingly.  If the exponent was negative it will not be increased above zero. 

• After an addition operation, the result is rounded to precision digits if necessary, taking into 
account any extra (carry) digit on the left after an addition, but otherwise counting from the 
position corresponding to the most significant digit of the operands being added or subtracted 
(rather than the most significant digit of the result). 

• For the max and min operations, the first (left-hand) operand is chosen if the operands are 
numerically equal. 

• If both operands to a power operation are zero then the result is 1 (instead of being an error); 
however, if the left-hand operand is zero the right-hand operand must not be negative. 

• The right-hand operand to a power operation may be an integer, and subset implementations are 

expressed as a constraint on the result because it is often more convenient or efficient to implement it in this way. The 
rule also preserves integers as specified by ANSI X3.274, and in particular ensures that the results of the divide and 
divide-integer operations are identical when the result is an exact integer. 

46 See: T. E. Hull, A. Abrham, M. S. Cohen, A. F. X. Curley, C. B. Hall, D. A. Penny, and J. T. M. Sawchuk, Numerical 
Turing, SIGNUM Newsletter, vol. 20 #3, pp26-34, ACM, May 1985. 

47 In the subset arithmetic, zeros have no exponent. 
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only required to provide the power function for integer powers. In this case the algorithm 
described below may be used for calculating the result. 

• The fused-multiply-add operation is not defined for subset implementations, because the 
rounding of operands rule conflicts with the requirement for fused-multiply-add to deliver a 
result with only one rounding. 

Exceptional condition and rounding mode rules

In the subset arithmetic, exceptional conditions other than the informational conditions (Lost digits, 
Inexact, Rounded, and Subnormal) must be treated as errors, and results after these errors are 
undefined. Special values and subnormal numbers, therefore, are not part of the arithmetic. 

In the subset, only the Lost digits trap enabler is required.  Inexact, Rounded, and Subnormal trap 
enablers are optional, and the others are (in effect) always set.  Similarly, the status bits in the context 
are optional. 

Only the round-half-up rounding mode is required. 

Calculating an integer power

Subset implementations are only required to provide the power function for integer powers.  To 
calculate this, the number (left-hand operand) is in theory multiplied by itself for the number of times 
expressed by the power. If the right-hand operand is negative, the left-hand operand is used as-is, the 
absolute value of the right-hand operand is used, and the final result is inverted.48 

In practice (see the note below for the reasons), the power is often calculated by the process of left-to-
right binary reduction. For power(x, n): “n” is converted to binary, and a temporary accumulator is 
set to 1. If “n” has the value 0 then the initial calculation is complete. Otherwise each bit (starting at 
the first non-zero bit) is inspected from left to right. If the current bit is 1 then the accumulator is 
multiplied by “x”. If all bits have now been inspected then the initial calculation is complete, 
otherwise the accumulator is squared by multiplication and the next bit is inspected. 

The multiplications and any final division are done under the normal arithmetic operation rules, using 
the precision supplied for the operation, except that the multiplications (and the division, if needed) 
are carried out using an increased precision of precision+elength+1 digits. Here, elength is the 
length in decimal digits of the integer part (coefficient) of the whole number “n” (i.e., excluding any 
sign, decimal part, decimal point, or insignificant leading zeros.49 

If, when raising to a negative power, an underflow occurs during the division into 1, the operation is 
not halted at that point but continues.50 

Notes: 
1. A particular algorithm for calculating integer powers is described, since it is efficient (though 

not optimal) and considerably reduces the number of actual multiplications performed. It 
therefore gives better performance than the simpler definition of repeated multiplication. Since 
results can occasionally differ from those of repeated multiplication, the algorithm is defined 

48 This rule is slightly more complicated than inverting before the calculation, in that it requires special treatment of 
overflow and underflow conditions (which were not an issue in X3.274). 

49 The precision specified for the intermediate calculations ensuresthat the final result will differ by at most 1, in the least 
significant position, from the “true” result (given that the operands are expressed precisely under the current setting of 
digits). Half of this maximum error comes from the intermediate calculation, and half from the final rounding. 

50 It can only be halted early if the result becomes zero. 
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here so that different implementations which use it will give identical results for the power 
operation on the same values, and may therefore use the same testcases.  Other algorithms for 
the power operation may also be used, so long as the result is within 1 ulp (unit in last place) of 
the correct result. 

2. Implementations are encouraged to provide a power operator which will accept a non-integral 
right-hand operand when the left-hand operand is non-negative, as described in the body of this 
specification. 
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Appendix B – Design concepts

This appendix summarizes the concepts underlying the arithmetic described in this document, as 
background information.  It is not part of the specification. 

The decimal arithmetic specified in this document is based on a floating-point model which was 
designed with people in mind, and necessarily has a paramount guiding principle – computers must  
provide an arithmetic that works in the same way as the arithmetic that people learn at school.51 

Many people are unaware that the algorithms taught for “manual” decimal arithmetic are quite 
different in different countries, but fortunately (and not surprisingly) the end results differ only in 
details of rounding and presentation. The particular model chosen was based on an extensive study of 
decimal arithmetic and was then evolved over several years (1979–1982) in response to feedback from 
thousands of users in more than forty countries.  Numerous implementations have been written since 
1982, and minor refinements to the definition were made during the process of ANSI standardization 
(1991–1996).52 

This base floating-point model has proved suitable for extension to meet the additional requirements 
and facilities defined in ANSI/IEEE 854-1987,53 and the full specification is, in effect, the union of the 
floating-point specifications of the two standards.  This means that the same number system and 
arithmetic supports, without prejudice, both exact unrounded decimal arithmetic (sometimes called 
“fixed-point” arithmetic) and rounded floating-point arithmetic.  The latter includes the facilities and 
number values which are now widespread in binary floating-point implementations. 

Fundamental concepts

When people carry out arithmetic operations, such as adding or multiplying two numbers together, 
they commonly use decimal arithmetic where the decimal point “floats” as required, and the result that 
they eventually write down depends on three factors: 

1. the specific operation carried out 

2. the explicit information in the operand or operands to the operation 

3. the information from the implied context in which the calculation is carried out (the precision 
required, etc.). 

The information explicit in the written representation of an operand is more than that conventionally 
encoded for floating-point arithmetic. Specifically, there is: 
51 For more discussion on why this is important, see the Frequently Asked Questions about decimal arithmetic at 

http://speleotrove.com/decimal/decifaq.html 
52 See ANSI standard X3.274-1996: American National Standard for Information Technology – Programming Language 

REXX, X3.274-1996, American National Standards Institute, New York, 1996. 
53 ANSI/IEEE 854-1987 – IEEE Standard for Radix-Independent Floating-Point Arithmetic, The Institute of Electrical and 

Electronics Engineers, Inc., New York, 1987. 
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• an optional sign (only significant when negative) 

• a numeric part, which may include a decimal point (which is only significant if followed by any 
digits) 

• an optional exponent, which denotes a power of ten by which the numeric is multiplied 
(significant if both the numeric and exponent are non-zero). 

The length of the numeric and original position of the decimal point are not encoded in traditional 
floating-point representations, such as ANSI/IEEE 754-1985,54 yet they are essential information if the 
expected result is to be obtained. 

For example, people expect trailing zeros to be indicated conventionally in a result: the sum 1.57 + 
2.03 is expected to result in 3.60, not 3.6; however, if the positional information has been lost 
during the operation it is no longer possible to show the expected result.  For some applications the 
loss of trailing zeros is materially significant. 

Fortunately, the later standard ANSI/IEEE 854-1987, which is intended for decimal as well as binary 
floating-point arithmetic, does not proscribe representations which do preserve the desired 
information. A suitable internal representation for decimal numbers therefore comprises a sign, an 
integer (called the coefficient in this document), and an exponent (which is an integral power of ten). 

Similarly, decimal arithmetic in a scientific or engineering context is based on a floating-point model, 
not a fixed-point or fixed-scale model (indeed, this is the original basis for the concepts behind binary 
floating-point).  Fixed-point decimal arithmetic packages such as the BigDecimal class in Java 1.1 are 
therefore only useful for a subset of the problems for which arithmetic is used. 

The information contained in the context of a calculation is also important.  It usually applies to an 
entire sequence of operations, rather than to a single operation, and is not associated with individual 
operands.  In practice, sensible defaults can be assumed, though provision for user control is necessary 
for many applications. 

The most important contextual information is the desired precision for the calculation.  This can range 
from rather small values (such as six digits) through very large values (hundreds or thousands of 
digits) for certain problems in Mathematics and Physics. Some decimal arithmetics (for example, the 
decimal arithmetic in the Atari Operating System) offer just one or two alternatives for precision – in 
some cases, for apparently arbitrary reasons. Again, this does not match the user model of decimal 
arithmetic; one designed for people to use must provide a wide range of available precisions. 

This specification provides for user selection of precision; the representation (especially if it is to 
conform to the IEEE 854-1987 standard referred to above) may have a fixed maximum precision, but 
up to the maximum allowed by the representation the precision used for operations may be chosen by 
the programmer. 

The provision of context for arithmetic operations is therefore a necessary precondition if the desired 
results are to be achieved, just as a “locale” is needed for operations involving text. 

This specification provides for explicit control over several aspects of the context, including: the 
required precision (the point at which rounding is applied), the rounding algorithm to be used when 
digits have to be discarded, the range of normal numbers (which determines the bounds for overflow 
and underflow), and finally a set of flags and trap-enablers which report exceptional conditional and 
control how they are handled. 

54 ANSI/IEEE 754-1985 – IEEE Standard for Binary Floating-Point Arithmetic, The Institute of Electrical and Electronics 
Engineers, Inc., New York, 1985. 
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Appendix C – Changes

This appendix is not part of the specification.  It documents changes to the combined arithmetic 
specification, including changes to the earlier two-layer specifications. 

Changes with draft number 0.nn refer to changes in the original base specification since the first public 
draft of that specification (0.65, 26 Jul 2000). 

Changes with draft number x.nn (for example, x.40) refer to changes in the original extended 
specification (inserted in their chronological position) since the first public draft of that specification 
(0.30, 9 Aug 2000). 

Changes with version number 1.nn refer to changes in the combined arithmetic specification. 

Changes in Draft 0.66 (28 Jul 2000)

• The rules constraining any limits applied to the exponent of a number (see page 9) have been 
added. 

• Minor corrections and clarifications have been added. 

Changes in Draft 0.69 (9 Aug 2000)

• A number produced by the to-number conversion operation has a sign of zero if the coefficient is 
0; similarly, arithmetic operations cannot produce a result of -0. These rules allow concrete 
representations comprising two simple integers.  Note that the Extended specification provides a 
mechanism for preserving and producing -0. 

• The Exceptional conditions (see page 51) section has been extended to separate out more 
exceptions and to align them with IEEE 854. 

• The names of some operations have been changed to achieve a consistent style. 

• Minor corrections and clarifications have been added. 

Changes in Draft 0.74 (27 Nov 2000)

• The rules constraining the limits applied to the exponent of a number (see page 9) have been 
corrected (Emin did not take into account the length of the coefficient). 

• The rules for converting a number to a scientific string (see page 19) have been rephrased and 
corrected (the previous rules incorrectly converted some zero values). 

• The Exceptional conditions (see page 51) section has been alphabetized, and the Invalid 
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context condition has been added. 

• Minor corrections, clarifications, and additional examples have been added. 

Changes in Draft 0.81 (5 Jan 2001)

• The round-down (truncation) rounding algorithm has been added. 

• The rules constraining the right-hand operand of the power operation have been clarified, and 
the Invalid operation condition has been added for reporting errors. 

• The rules for reporting underflow or overflow during a power operation to a negative power 
have been specified. 

• The rules for preserving integers and removing insignificant zeros have been clarified. 

• Minor clarifications and additional examples have been added. 

Changes in Draft x.40 (14 May 2001)

• The Exceptional conditions section (see page 51) has been revised and sorted.  Additional cases 
where the Invalid operation condition can be raised have been identified, and the Invalid 
context condition has been added. 

• Subnormal numbers are explicitly permitted as operands and for results, provided that special 
values are also permitted. 

• The string representations of NaN values have been changed to conform to recent discussions of 
the IEEE 754R committee (further changes may be necessary). 

• Minor corrections and clarifications have been made. 

Changes in Draft 0.83 (25 May 2001)

• The significand of a number has been renamed from integer to coefficient, to remove possible 
ambiguities. 

• The rescale operation (see page 36) has been added, because it is available in most existing 
implementations in some form and is required for many formatting operations.  It needs to be 
part of the base specification because it uses the parameters of the context. 

• The treatment of zeros with exponents or fractional parts in the to-number conversion has been 
corrected. 

• Minor clarifications and editorial changes have been made. 

Changes in Draft x.41 (25 May 2001)

• The significand of a number has been renamed from integer to coefficient, to remove possible 
ambiguities. 

• The treatment of zeros with exponents or fractional parts in to-extended-number has been 
clarified. 
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Changes in Draft x.43 (28 June 2001)

• The rounded condition (with associated signal and trap-enabler) has been added. 

Changes in Draft x.52 (15 October 2001)

• The special-values flag in the context has been renamed extended-values to better reflect its effect 
and avoid confusion (the term special values refers only to infinities and NaNs). 

• In order to permit more efficient implementations, the specification no longer requires that 
special and extended values raise an Invalid operation condition if a context with a extended-
values of 0 is in use. 

• For the same reason, extended zeros can no longer have non-zero exponents; in extended 
operations the precision of a zero should be ignored. 

• Similarly, NaNs can no longer have a sign of 1. (An implementation can allow signed NaNs, but 
they would not be visible using the conversions specified.) 

• The string conversion from [0,sNaN] has been changed to "sNaN", as proposed in recent 
IEEE 754R discussions. 

• Minor corrections and clarifications have been made, and additional examples have been added. 

Changes in Draft 0.86 (30 October 2001)

• If the divisor of the remainder operation is 0, an Invalid operation condition is raised (instead 
of Division by zero), for compatibility with IEEE 854. 

• Minor clarifications and editorial changes have been made. 

Changes in Draft x.57 (28 November 2001)

• The operation of the power and rescale operators has been clarified. 

• The behaviors of the Overflow and Underflow exceptional conditions have been clarified. 

• The trap-result parameter of the context has been removed, as it is no longer needed for the 
exceptional conditions as specified. 

• Additional cases where a result of -0 is possible have been documented. 

• Minor corrections and clarifications have been made, additional examples have been added, and 
differences from IEEE 854 have been identified. 

Changes in Draft 0.87 (23 April 2002)

• The definition of the rescale operation has been changed so the the exponent is always set as 
specified, even if the coefficient is 0. 

• Minor clarifications and editorial changes have been made. 
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Changes in Draft x.58 (23 April 2002)

• The operation of the rescale operator has been extended to match the base specification (the 
exponent is now always set as given, even if the coefficient is 0). 

Changes in Draft 1.00 (5 July 2002)

This version combines the original base and extended specifications. There are necessarily extensive 
editorial changes.  In addition, the following significant technical changes have been made: 

• The abs, max, min, and trim operators have been added. 

• A precision setting may now have a lower bound as well as an upper bound.  This permits “fixed 
precision” implementations, for example, in hardware. 

• The symbols Emin and Emax have been redefined to match the usage in IEEE 854 (that is, they 
now refer to the adjusted exponent). 

• The divide operator no longer trims trailing zeros automatically.  The trim operator has been 
added to provide this capability independently. 

• The calculation of the sign, coefficient, and exponent has been separately detailed for addition, 
subtraction, multiplication, and division. 

• Zero values accepted by to-number and produced by various operations may now have a non-
zero exponent. 

• The rescale operator now accepts a infinite left-hand operand. This has allowed the round-to-
integer operator to be defined as a special case of rescale. 

• The power operator is marked as “under review”; it may be redefined or removed in a later 
version.  (It is currently included because it defines the results as presented in 
power.decTest.) 

Changes in Draft 1.03 (1 September 2002)

• The specification allowed subnormal numbers to be more precise than permitted by IEEE 854. 
It has been changed to enforce a minimum exponent of Etiny; this exponent will also be used 
when a conversion or calculation underflows to zero. 

• The Underflow condition is now raised according to the IEEE 854 untrapped underflow criteria 
(instead of according to the IEEE 854 trapped criteria). That is, underflow is now only raised 
when a result is both subnormal and inexact. 

• The Subnormal condition has been added, to allow detection of subnormal results even if 
Underflow is not raised. 

• If an overflow or underflow occurs, the Overflow or Underflow conditions are raised, 
respectively, instead of special conversion conditions. This aligns the specification more closely 
with IEEE 854. 

• The power operator has been changed to allow subnormals after raising a number to a negative 
power. 

• The to-number conversion has been enhanced to round the converted coefficient (if necessary) 
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instead of raising overflow. 

• Minor clarifications and editorial changes have been made. 

Changes in Draft 1.06 (9 October 2002)

• The normalize operation has been added; it reduces a number to its shortest (coefficient) form. 
(This replaces the trim operator, which only removed trailing fractional zeros.) 

• The definition of the squareroot operation has been simplified and now returns a result which 
is independent of the rounding mode in the context. This allows simpler implementations, and 
also allows the use of Hull and Abrham’s variable-precision algorithm.55 

• Input operands to the arithmetic operations are no longer rounded before use (this rounding, and 
the associated Lost digits condition, can therefore only occur in the X3.274 subset arithmetic). 
This change aligns the arithmetic with Java unlimited arithmetic, and also significantly 
simplifies hardware implementations which provide precision control. 

• Minor clarifications and editorial changes have been made. 

Changes in Draft 1.08 (14 November 2002)

• The description of the compare operation has been clarified; its result is always exact and 
unrounded. 

• Two errors in the description of the divide operation have been corrected (“dividend” and 
“divisor” were swapped in the second While loop, and the calculation of the exponent when the 
dividend is zero was described incorrectly). 

Changes in Draft 1.11 (21 February 2003)

• Changes have been made to accomodate the proposed decimal formats agreed by the IEEE 754r 
committee; in particular, Emin can now be -Emax±1. 

• The sign on a NaN is no longer required to be 0; it is now ignored (as in IEEE 754). 

• A new context flag, clamped, has been added. 

• Minor clarifications and editorial changes have been made. 

Changes in Draft 1.14 (14 April 2003)

The description of the divide algorithm has been simplified (the algorithm is unchanged), and minor 
editorial corrections have been made. 

Changes in Draft 1.20 (12 May 2003)

The following changes have been made to improve the consistency of some operations: 

• The condition raised when the result of a rescale operation cannot fit has been changed from 
Overflow to Invalid operation.  This better fits the description in IEEE 854, and avoids the 

55 See Properly Rounded Variable Precision Square Root, T. E. Hull and A. Abrham, ACM Transactions on Mathematical 
Software, Vol 11 #3, pp229-237, ACM, September 1985. 
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problem of Overflow rebiasing if the condition is trapped and an implementation provides the 
alternative result. 

• The description of the square-root operation has been expanded and changed to follow the 
same rules as the divide operator (briefly, the result with an exponent closest to the ideal 
exponent is used if the result is exact, otherwise the result will have precision digits). 

• The result after dividing a zero by a non-zero divisor has been redefined to match the general 
rules for the divide operation. These rules are now included as a note. 

Changes in Draft 1.30 (11 June 2003)

Following discussions at the May 2003 IEEE 754 revision committee meeting, the following changes 
have been made: 

• The term quantum has been introduced.  This is the value of a unit in the least significant digit of 
the coefficient of a finite number. 

• The rescale operation has been renamed quantize.  This has identical semantics except that the 
second operand specifies the desired quantum by example, which allows a faster 
implementation in most cases. 

• The ideal exponent for the square-root operator is now floor(e/2), where e is the exponent of 
the operand. This is a better match to actual behavior of algorithms. 

Changes in Draft 1.32 (23 July 2003)

Following discussions at the June 2003 IEEE 754 revision committee meeting, the following change 
has been made: 

• The round-to-integer operator has been replaced by the round-to-integral-value operator (see 
page 39). 

The latter is more forgiving (no flags are set and no error is possible unless the operand is 
signaling NaN, and infinite values are allowed) but does not guarantee that the exponent of a 
finite result is 0 (it may be positive). To convert to an integer where the exponent must be 0, use 
the quantize operator. 

Changes in Draft 1.33 (27 August 2003)

• The same-quantum operator has added; this checks that two numbers have the same quantum 
(exponent) and is the operator now in the draft IEEE 754 revision. 

• The definition of to-engineering-string has been enhanced to match the JSR-13 proposed final 
specification: zeros preserve the original exponent. 

Changes in Draft 1.36 (10 September 2003)

• The notion of optional diagnostic information associated with NaNs, as described in IEEE 854 
§6.2., is now formalized.  In particular, such information has limits, is propagated through 
numeric operations, and has a specific string representation which preserves one-to-one 
mapping. 
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• Similarly, signs are permitted on NaNs and are propagated in the same way as diagnostic 
information. 

• Minor clarifications and editorial changes have been made. 

Changes in Draft 1.37 (2 October 2003)

The quantize operator with two infinite arguments is no longer an Invalid operation, consistent with 
the same-quantum operator. 

Changes in Draft 1.40 (15 March 2004)

• The quantize operator will never raise Underflow. 

• Minor clarifications and editorial changes have been made. 

Changes in Draft 1.45 (2 August 2004)

• The max and min operations follow the rules in the current IEEE 754 revision draft: 

◦ if one operand is a quiet NaN and the other is number, then the number is always returned 

◦ if both operands are finite and equal in numerical value then an ordering is applied: if the 
signs differ then max returns the operand with the positive sign and min returns the operand 
with the negative sign; if the signs are the same then the exponent is used to select the result. 

• Minor clarifications and extra examples have been added. 

Changes in Draft 1.50 (9 December 2005)

• The exp operation (see page 29) for raising e to a power has been added. 

• The ln natural logarithm (see page 31) and log10 base 10 logarithm (see page 31) operations 
have been added. 

• The power operation (see page 35) has been redefined to allow raising a number to a non-
integral power. 

• Minor clarifications and editorial changes have been made. 

Changes in Draft 1.51 (31 March 2006)

• Minor editorial changes have been made. 

Changes in Draft 1.66 (13 March 2007)

The changes in this version add most of the new functionality required to comply with the draft IEEE 
754 revision. 

• The following seven operations have been added to the Arithmetic operations section: 
compare-signal, fused-multiply-add, max-magnitude, min-magnitude, next-minus, next-
plus, next-toward, round-to-integral-exact. 
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• Twenty-seven miscellaneous operations have been added, in a new Miscellaneous operations 
section.  These are non-arithmetic, but their results can all be expressed as decimal numbers or 
strings. 

• The same-quantum operation has been moved to the Miscellaenous operations section. 

• Minor clarifications and editorial changes have been made. 

Note that some of these operations could still change their definition as the IEEE 754r draft is still in 
ballot. 

Changes in Draft 1.68 (23 July 2008)

• The IEEE 754 standard was approved in June 2008, so some aspects of this document are no 
longer proposals and have been updated to reflect the new status of the standard. 

• IEEE 754 has added the constraint that Emin = 1-Emax. 

• The requirements of IEEE 854 for the use of the terms single precision and double precision have 
been removed because in the last 21 years these terms have become synonymous with particular 
sizes of encodings (32-bit and 64-bit respectively). 

• The rounding mode round-05up has been added.  This permits arithmetic at shorter lengths to be 
carried out in a fixed-precision environment without double rounding. 

• The max-magnitude and min-magnitude operations have been changed to match the 
operations in IEEE 754. 

• The normalize operation has been renamed reduce to avoid confusion with normal numbers. 

• All references to the General Decimal Arithmetic website have been updated to 
http://speleotrove.com/decimal (its new location). 

• Various clarifications and editorial changes have been made. 

Changes in Version 1.70 (25 Mar 2009)

The document is now formatted using OpenOffice (generated from GML), for improved PDF files 
with bookmarks, hot links, etc.  There are no technical changes. 
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