o]
-
C
O
€
7))
Q
v
>

CONTENTS
PART 1

CHAPTER 1: AN INTRODUCTION TO THE BINARY NUMBER SYSTEM
1.1 BINARY NUMBERS
12 LOGICAL MANIPULATIONS
1.3 ARITHMETIC MANIPULATIONS
14 BINARY CODED DECIMAL (BCD) ARITHMETIC
CHAPTER 2: WELCOME TO THE MACHINE
2.1 HOW THE ACORN MICROPROCESSOR WORKS
22 THE MONITOR COMMANDS M, 1, {.
2.3 AT LAST, APROGRAM,
2.3.1 ASSEMBLY LANGUAGE, MACHINE LANGUAGE, THE INSTRUCTIONS
LOAD, STORE and JUMP
2.3.2 ENTERING A PROGRAM, THE GO COMMAND
2.3.3 INSTRUCTIONS JMP, JSR
2.3.4 LOGIC INSTRUCTIONS ORA AND EOR.
235 ARITHMETIC OPERATIONS: ADC, SEC, CLC
CHAPTER 3: INSIDE THE 6502
3.1 THE ACCUMULATOR, PROGRAM COUNTER, STATUS REGISTER
3.2 THE STACK POINTER,
3.3 THE INTERNAL REGISTERS X & Y
34 MAKING OUR PROGRAM ‘FRIENDLY’
CHAPTER 4: THE REMAINDER OF THE INSTRUCTION SET
4.1 BRANCHES
42 INDEXING
43 INDIRECTION
44 READ —MODIFY —WRITE INSTRUCTIONS
45 MISCELLANEOUS REMAINING INSTRUCTIONS
CHAPTER 5: ACORN HARDWARE
5.1 CHIP LAYOUT AND BUS
5.2 RESET, INTERRUPT REQUEST AND NON-MASKABLE INTERRUPT
5.3 6502 INTERNAL ARCHITECTURE
54 PROMS, EPROMS, RAM, RAM i/0
5,5 THE KEYBOARD AND TAPE INTERFACE
56 POWER SUPPLY
CHAPTER 6: FIRMWARE
6.1 THE TAPE STORE AND LOAD
6.2 THE BREAKPOINT AND RESTORE COMMAND
6.3 THE SINGLE STEPPING FACILITY
6.4 THE MONITOR LISTING
PART 2
APPLICATION PROGRAMS
APPENDICES
APPENDIX A: 64 CHARACTER ASCI!| ON ACORN’S 7 SEGMENT
DISPLAY
APPENDIX B: INSTRUCTION SET
APPENDIX C: HEXADECIMAL TO DECIMAL CONVERSION TABLE
APPENDIX D: ACORN MONITOR ADDRESS INFORMATION
GLOSSARY

PART 1

CHAPTER 1: AN INTRODUCTION TO THE BINARY NUMBER SYSTEM
1.1 BINARY NUMBERS:

NUMBERS IN EVERY DAY USE ARE WRITTEN IN THE DECIMAL SYSTEM, THAT
IS, TO THE NUMBER BASE 10. A POSITIONAL NOTATION IS USED
REPRESENTING ONE “100's; TWO “10's & EIGHT ‘1's AS THE SYMBOL 128. THE
RIGHTMOST (i.e. LEAST SIGNIFICANT) DIGIT IS IN THE “UNITS” COLUMN, THE
2 IN THE “TENS' COLUMN, THE 1 IN THE “HUNDREDS’' COLUMN, AND THE
VALUE OF THE SYMBOL ‘128’ IS EVALUATED AS 1x10¢+2x10 + 8x1 = 128.
SIMILARLY ‘1024’ IS EVALUATED AS 1x1000 + 0x100 + 2x10 + 4x1 = 1024, WHICH
IS MORE CONVENIENTLY WRITTEN AS 1x10° + 0x 102 + 2x10! 4x10° = 1024,
USING THE MATHEMATICAL SHORTHAND FOR 1000 = 10x1¢x10 = 10>, AND
THE CONVENTION ““ANY NUMBER TO THE POWER ZERO IS 1" TO GIVE A
CONSISTENT METHOD OF EVALUATING SUCH SYMBOLS,

SO 1024

CAN BE WRITTEN IN COLUMNS

3 2 1 0

1) 2 4

AND EVALUATED AS 1x10° + 0x10? + 2x10' +4x10°

TO THE BASE 19,

TO THE BASE 8, 1024 WOULD MEAN 1x8% + @x82 + 2x8! + 4x8° WHICH IS THE
DECIMAL NUMBER 532,

TO THE BASE 16,1024 WOULD MEAN 1x16° + @x162 + 2x16' + 4x16° WHICH IS
THE DECIMAL NUMBER 4132

TO DISTINGUISH THE BASE TO WHICH A NUMBER ISWRITTEN WE'LL WRITE
ITS’ BASE AFTER IT AS A SUBSCRIPT: 1024, AND NOW WE CAN WRITE

1020, - %)
1@2416 =413210
10@@0@@02 = 12810
JUST AS BASE TEN HAS THE NAME ‘DECIMAL’, BASE SIXTEEN HAS THE NAME
'HEXADECIMAL', BASE EIGHT HAS THE NAME ‘OCTAL’ AND BASE TWO
‘BINARY’. THESE FOUR BASES ARE IN COMMON USE WITH MODERN .
COMPUTERS, ESPECIALLY HEXADECIMAL (HEX) AND BINARY. CONVERSION
BETWEEN BINARY, OCTAL & HEX NUMBERS IS VERY SIMPLE. SINCE THEY ARE
ALL POWERS OF TWO, NUMBERS JUST NEED DIVIDING UP:—
10000000, = 110001100001, = 80,6

= 1010110001000, = 200,
— EACH HEX DIGIT IS FOUR BINARY DIGITS (BITS) & EACH OCTAL DIGIT IS
3 BITS.
OCTAL DIGITS ARE®,1,2,3,4,5,6,7.
HEX DIGITS ARE@,1,2,3,4,5,6,7,8,
INSTEAD OF 10....15 TO ALLOW UNRE
SYSTEM,

9,A,B,C,D,E,F A...F ARE USED
STRICTED USE OF THE POSITIONAL

— PROGRAM COUNTER: 16 BIT REGISTER WHICH CONTAINS THE ADDRESS OF

THE INSTRUCTION BEING EXECUTED. DURING EXECUTION THE

PROGRAMCOUNTER ISSTEPPED UP TO POINT AT THE NEXT INSTRUCTION.

— PROM: PROGRAMMABLE READ ONLY MEMORY. THIS TYPE OF MEMORY
ARRIVES BLANK. IT CAN BE PROGRAMMED BY THE USER WITH THE

HELP OF A SPECIAL PROM BLOWER. ONCE THIS PROGRAM HAS BEEN PUT

IN, IT CANNOT BE CHANGED.

— RAM: RANDOM ACCESS MEMORY. THIS IS THE STANDARD READ/WRITE
MEMORY. DATA (AND PROGRAMS) ARE LOST WHEN THE POWER IS
SWITCHED OFF.

— REGISTER: STORAGE LOCATION IN THE MICROPROCESSOR ITSELF. THERE

ARE INTERNAL REGISTERS A, X, Y,PC, S, P.

— ROM: READ ONLY MEMORY. THIS IS MEMORY THAT HAS A PROGRAM PUT
IN DURING PRODUCTION. THIS PROGRAM CANNOT EVER BE CHANGED,
IT CAN ONLY BE READ.

— STORE: TRANSFERS DATA FROM AN INTERNAL REGISTER TO MEMORY.

— XTAL: THE CRYSTAL IN THE ACORN OSCILLIATES AT 1 MHZ. i.e. ONE
MILLION TIMES A SECOND. IT DOES THIS WITH GREAT ACCURACY. SO
YOU CANBUILD A CLOCK FROM YOUR ACORN.

e

CONVERSION TABLE

I
m
x

DECIMAL

—))))))
DO PRPWN—SCTROONOUORARWN—=a

WO HN =
ShessaeaTMIUONTP>POONOORWN s

— —
NS W
[eall SN]

100 256

OCTAL

NOORWN -

10
1
12
13
14
15
16
17
20
40
100
144
200
400

BINARY
@

1

10

1

100

191

110

111
1000
1001
1010
1011
1100
1191
1110
1111
10000
100000
1000000
1100100
10000000
100000000

THE ACORN MICROPROCESSOR IS DESIGNED TO DEAL WITH 8 BITS AT A TIME.
THE COLLECTION OF 8 BITS IS GIVEN THE SPECIAL NAME ‘BYTE’, AND IS

NORMALLY WRITTEN INHEXADECIMAL OR BINARY. ABYTE THUS IS @....FF,¢:
@...11111111, OR @....265, . THE MICROPROCESSOR CAN CARRY OUT LOGICAL
AND ARITHMETICAL MANIPULATIONS ON BYTES.

1.2 LOGICAL MANIPULATIONS

THE MICROPROCESSOR CAN IMMEDIATELY CARRY OUT THE LOGICAL AND,
EXCLUSIVE -OR & OR FUNCTIONS ON ALL 8 BITS SIMULTANEQUSLY, USING
THE FOLLOWING TRUTH TABLES FOR EACH BIT {SYMBOL 'b’)

AND (A) EXCLUSIVE-OR (¥)

by | by | result by | by | result

o1e |0]

@ |1)) 1 1

110 @ 1] 1

1 11 1 1 1 0

EXAMPLE

OPERANDS

@3111190 03111100

21011019 AND 010119010 E-OR
(OPERATOR)

(0311000 RESULT 01100110

OR(V)

by | by | result

i)
)]
1
1

1]

el = S~ Re

1
1
1

00111100
1811810 OR

21111110

1.3 ARITHMETIC MANIPULATIONS

BINARY ADDITION M | CARRY

WITH CARRY OUTPUT

v
w
| = = acC

[y

- = QT
-9 - QT
-t e S,

BINARY ADDIT!ION WITH CARRY FROM RIGHT

by b, INPUT CARRY SUM OUTPUT CARRY TO LEFT

) [] [(]

@ 1] 1]

1 ? ? 1 @

1 1)] 1

)) 1 1 ?

) 1 1) 1

1 /) 1] 1

1 1 1 1 1

EXAMPLE: 20111100 3Cis 60; 0

219119010+ %16*' 9_0'10+
10019110 96,6 150 o

IN ORDER TO MAKE LONGER ADDITIONS EASIER TO PROGRAM, THE
MICROPROCESSOR HAS A CARRY BIT (FLAG). AT THE START OF AN
ADDITION THIS IS TREATED AS THE INPUT CARRY, AND AT THE END IT
RECEIVES THE CARRY OUT FROM THE SUM AT BIT 7: ASSUMING WE HAVE A
CARRY INPUT:

11000011 C316 195,
10100101 CARRY IN AB,¢ 165, 6
(34 _Tye + _Tiot
CARRY OUT 01101001 169, ¢ 3610

SUBSTRACTION OPERATES IN A SIMILAR MANNER, EXCEPT THAT THE
CARRY (OR BORROW) FLAG OPERATES UPSIDE DOWN: A @ CARRY FLAG IS
TREATED AS REPRESENTING A BORROW FROM THE PREVIOUS STAGE:

11111111 FFye 255, ¢
30000000 00, 000, o
@ Die _bio
O] g TFE, 6 51010

NOT QUITE THE RESULTS ONE MIGHT HAVE WISHED FOR! (SUPERFICIALLY)
THIS OCCURS BECAUSE OF THE HARDWARE IMPLEMENTATION OF
SUBTRACTION A SUBTRACTION, (P—Q), IS REGARDED BY THE MICRO-
PROCESSOR AS THE EQUIVALENT (P+(—Q)), BECAUSE THERE IS A SIMPLE
WAY TO GENERATE THE NEGATIVE OF A NUMBER.

THE '‘ONES-COMPLEMENT’' OF A BINARY NUMBER IS SIMPLY GENERATED BY
EXCHANGING ‘@'s & ‘1's:

1s 00001100, @Ci6 1240

COMPLEMENT 11110011, F3,6 243, ,
{F THIS ONE'S-COMPLEMENT IS TO BE THE NEGATIVE OF A NUMBER,

WE SHOULD GET @ ON ADDITION:

GLOSSARY

— ACCUMULATOR: 8-BIT CENTRAL REGISTER IN THE MICROPROCESSOR.
MOST INFORMATION HAS TO GO THROUGH IT.

— ADDRESS: 16 BIT POINTER TO A MEMORY LOCATION. THE 6502 MICRO-
PROCESSOR CAN ADDRESS 65, 536 SUCH LOCATIONS (WHICH 1S 219),

— ARITHMETIC LOGIC UNIT (A.L.U.): A SECTION OF THE MICROPROCESSOR
WHICH CARRIES OUT ARITHMETIC (ADDITION, SUBTRACTION,
INCREMENT, DECREMENT & COMPARE) AND LOGIC (“AND”,”’EOR",
“OR", & BIT SHIFTS) MANIPULATIONS. THIS IS THE ONLY PART OF
THE MICROPROCESSOR WHICH ALTERS DATA.

— COMMAND: THE MONITOR FUNCTIONS M,G,P,R,L,S,1'}.

— DATA: INFORMATION FOR THE PROCESSOR THAT DOES NOT HAVE TO BE
TRANSLATED. e.g. “AD" AS DATA ACTUALLY MEANS 10x16+13x1 = 173,
WHEREAS THE INSTRUCTION “AD” GETS TRANSLATED INTO THE
OPERATION “LOAD ACCUMULATOR ABSOLUTE".

— EPROM: ERASABLE PROGRAMMABLE READ ONLY MEMORY. THIS TYPE
OF MEMORY IS LIKE A PROM, BUT CAN AGAIN BE ERASED BY
EXPOSING THE CHIP TO ULTRAVIOLET LIGHT.

— FLAGS: ONE BIT INTERNAL REGISTERS. ALL SEVEN FLAGS CAN ALSO BE
TREATED AS SEPARATE BITS OF THE P REGISTER (PROCESSOR STATUS).

— INDEX REGISTER: A REGISTER WHICH CAN BE USED TO MODIFY AN
ADDRESS (USED IN REFERRING TO DATA) BY BEING ADDED TO IT, THUS
ACCESSING A CERTAIN ELEMENT OF A TABLE. THE 6502 HAS TWO INDEX
REGISTERS CALLED X & Y.

— INSTRUCTION: A FUNCTION OF THE MICROPROCESSOR LIKE LOAD AND
STORE.

— 1/0: INPUT/OUTPUT. THIS CHIP ALLOWS YOU TO COMMUNICATE WITH THE
OUTSIDE WORLD. IN THE ACORN THE 1/0 CHIP HAS 16 PROGRAMMABLE
LINES WHICH CAN EITHER BE OUTPUTS OR INPUTS. IT ALSO HAS 128
BYTES OF RAM.

— IRQ: INTERRUPT REQUEST. IF FLAG | (INTERRUPT DISABLE) IS CLEAR AND
A REQUEST IS MADE THE PROCESSOR WILL ATTEND TO IT AFTER
SETTING FLAG | AND STORING THE PROGRAM COUNTER AND STATUS
REGISTER.

— JUMP: THE PROGRAM COUNTER IS LOADED WITH A NEW ADDRESS. THE
EXECUTION OF THE PROGRAM, WHICH 1S NORMALLY USING
CONSECUTIVE ADDRESSES, CONTINUES (JUMPS) AT THIS NEW ADDRESS.

— LOAD: TRANSFERS THE DATA OF A MEMORY LOCATION TO AN INTERNAL
REGISTER.

— MNEMONIC: SUGGESTIVE ABBREVIATION OF AN INSTRUCTION e.g. THE
INSTRUCTION “LOAD ACCUMULATOR ABSOLUTE"” HAS THE MNEMONIC
“LLDA",

—NMI: NON MASKABLE INTERRUPT WHEN THE NON MASKABLE INTERRUPT
IS ACTIVATED THE PROCESS WILL SET FLAG |, STORE AWAY ITS
PROGRAM COUNTER AND STATUS REGISTER AND THEN IMMEDIATELY
ATTEND TO THE INTERRUPT. THERE IS NO WAY OF PREVENTING THIS
INTERRUPT. IT HAS PRIORITY OVER IRQ.

— OPCODE: HEXADECIMAL REPRESENTATION OF AN INSTRUCTION. e.g. THE
INSTRUCTION “LOAD ACCUMULATOR ABSOLUTE’ HAS THE MNEMONIC
“LDA"" AND THE OPCODE "“AD"".

0010

011
0012
0013
0014-0017
0018

2019
PB1A

001C,001D
GMEQB1F
0018
FEQ®
FEQC

FESE
FE6D
FEG4
FEG6
FEGF
FE7A
FES8
FEAQ

FEA6
FEB1
FECD
FED®
FEDD
FEF3
FF@4
FFB3

FFEA

0IR

D,R4 BASE ADDRESS OF THE EIGHT DISPLAYED MEMORY
LOCATIONS, REGISTER 4: TEMPORARILY PCH AFTER

BREAK.

R5 REGISTER 5: TEMPORARILY PCL AFTER BREAK

R6 REGISTER 6: TEMPORARILY @1 AFTER BREAK

R7 REGISTER 7: TEMPORARILY S AFTER BREAK,
LAST 4 DISPLAYED MEMORY LOCATIONS.

P SINGLE LEVEL OF STORAGE FOR PREVIOUS DATA AT
BREAK POINTS.

coL COLUMN OF KEY CURRENTLY BEING PROCESSED

TXTY TEMPORARY STORAGE FOR X (IN DISPLAY)OR Y
(VARIOUS PLACES).

USERNMI ADDRESS OF USER’S NMI PROGRAM

USERIRQ ADDRESS OF USER’S IRQ PROGRAM

RECAL CONTAINS PC RECALCULATION FACTOR FOR BREAK

QUAD DISPLAY X—3,X—2,X—1,X ON THE DISPLAY; THEN {

DISPLLAY STROBE KEYBOARD, MULTIPLEX DISPLAY, RETURN
WITH KEY INFORMATION

MHEXTD DISPLAY A MEMORY BYTE ON RIGHT OF DISPLAY

RDHEXTD DISPLAY A ON RIGHT OF DISPLAY

QHEXTD1 DISPLAY X & X+1 ON DISPLAYS 1,23& 4

QHEXTD2 DISPLAY X & X+1 ON DISPLAYS Y-2,Y—-1,Y & Y+1

DHEXTD DISPLAY A ON DISPLAYSY & Y+1

HEXTD DISPLAY BOTTOM 4 BITS OF A ON DISPLAY Y

QDATFET FETCH AN ADDRESS INTO LOCATIONS X & X+1

COM16 INCREMENT & COMPARE TWO 16 BIT NOS X+6,X+7 &
X+8,X+9

NOINC COMPARE X+6,X+7 & X+8,X+9 FOR EQUALITY

PUTBYTE ATO TAPE,DO 1START & 1 STOP BITS, NO PARITY

WAIT WAIT FOR CASSETTE TIMING

%WAIT HALFTHEWAIT

GETBYTE TAPE TO A,WAIT FOR START BIT, CENTRE TIMING

RESET ENTRY TO MONITOR

RESTART RE-ENTRY TO RUNNING MONITOR

BREAK ENTRY TO MONITOR FROM BRK INSTRUCTION,
DISPLAY CPU

FONT SEVEN SEGMENT PICTURES OF THE HEX DIGITS

RECAL CONTAINS PC RECALCULATION FACTOR FOR BREAK

00001100, BCy6 1250
11110011, + F3;6 + 243, +
TERREEER FF, e 265,
WHICH DOESN'T HAPPEN UNTIL WE ADD AN EXTRA 1:
00001100, 0Cie 1210
11110@112 F316 24310
. 1, + 116 + 1,0 16
1 00000000, 700, 6 256, 6

AND THEN TREAT THE OUTPUT CARRY AS INDICATING THE ABSENCE OF A
BORROW FROM THE HIGHER ORDERS.

THE NUMBER (ONE'S-COMPLEMENT + 1) IS CALLED THE TWO’'S-COMPLEMENT
OF A NUMBER:

BINARY HEXADECIMAL DECIMAL
00000001, Bl +110
PA00000, 00,6 +By0 or =0y o
11111111, FFie ~110
111111102 FEig 210
11110100, Flye —1250
10000000, 80,6 —128,¢
01111111, 7F 6 +12710

SO ABYTE CAN BE TREATED AS A 'SIGNED BINARY NUMBER' IN THE RANGE
+127.....0..... —128, OR AS A BINARY NUMBER IN THE RANGE @.....+255. NOW
THE SUBTRACTION ABOVE SHOULD BE CLEAR : INTERNALLY, THE MICRO-
PROCESSOR ONE'S-COMPLEMENTS ONE OF THE NUMBERS AND THEN
EXECUTES A NORMAL ADDITON WITH CARRY.

1.4 BINARY CODED DECIMAL (BCD) ARITHMETIC
99,6 LOOKS VERY LIKE99,, THEY BEHAVE THE SAME WAY AS THEY ARE
MOVED AROUND AND UNDERGO LOGICAL OPERATIONS SINCE THEY ARE
WRITTEN THE SAME WAY. THE BINARY REPRESENTATION OF 99, , WOULD
NORMALLY BE 01100011,, AND OF 99, |T WOULD BE 16611001,. WE NOW
DEFINE THE BINARY CODED DECIMAL VERSION OF 99,, AS BEING THE
BINARY REPRESENTATION OF THE DECIMAL DIGITS IN THE ORIGINAL
POSITIONAL NOTATION, MAKING THE DIFFERENCE BETWEEN THE BINARY
REPRESENTATIONS OF 99,4 & 99,0 A MATTER OF SUPSCRIPTS:

9916 = 1001 1@@12

99,0 = 10011001 B.C.D.
THE B.C.D. AND BINARY NUMBERS DIFFER IN HANDLING ONLY IN
ARITHMETIC:

7916 7910
22,4 t+ BUT 22,0 +
9B1¢ 10140

THE MICROPROCESSOR CAN BE ‘TOLD' WHICH TYPE OF ARITHMETIC TO
CARRY OUT, BY SETTING (PUTTING A ONE INTO) OR CLEARING (PUTTING A
ZERO INTO) AN INTERNAL BIT, THE ‘DECIMAL MODE’ FLAG.

CHAPTER 2: WELCOME TO THE MACHINE APPENDIX C HEXADECIMAL TO DECIMAL
2.1 HOW ACORN’'S MICROPROCESSOR WORKS

TO CARRY OQUT THE ABOVE OPERATIONS THE MICROPROCESSOR HAS AN Ist
INTERNAL ARITHMETIC LOGIC UNIT (A.L.U.) WHOSE OUTPUT IS SENT TO AN DIGIT 2nd DIGIT
INTERNAL REGISTER OF ONE BYTE LENGTH CALLED THE ACCUMULATOR ¢ il 2 3 4 s| & 7 gl o A B ad o el ¢
'A’, THIS REGISTER ALSO ACTS AS ONE OF THE OPERANDS; THE OTHER BEING St ===ttt
DRAWN FROM THE MEMORY EXTERNAL TO THE uPROCESSOR, WHICH IS CON- N T T TR IR B R B Wl R T Wk TR B) Bl BT) M
NECTED TO THE uP BY 8 LINES CALLED THE DATABUS: 1 BV B I B T e BRI) B WV Nl W W T Y
3| 48| 49| 60| 611 521 53] 64| 55| 56| 67| 581 50] 60| 61] 62[63
I 64| 651 66] 67] 681 69| 70| 71| 72| 73| 741 75| 76] 77| 78| 79
DATABUS 5] 80] B81] 82| 83| 84 ©5] 66| 87/] o8| a0 90| 91| 92| 93| 94| 95
- 6] 96| 970 98| OO0 108 | 101|102} 103| 104|105 | 106 | 107 | 1984109 | 118111
MEMORY /T"‘*f\ i 711121 113}114] 1165 116 | 117{118] 1191 120|121 | 122] 123 | 124]125 | 126|127
Sertl i 811281 120|130 [1311 132 | 133}134| 135] 136|137 | 138 | 139 | 140]141 | 142|143
. ! ° 9144 | 145[146 | 147 | 148 | 149|160 151] 152|153 | 1564 | 155 | 1561157 | 158159
j Al160] 161162] 163] 164 | 166]166] 167| 168|169] 1701 171 | 1721173 | 174|175
Bl1761 1771178 | 179 | 180 | 1811182 183 | 184|185 | 186] 187 | 188|189 | 199191
Cl192 1 193)194 | 195 196 | 197§198 | 199 | 200|201 | 202 | 203 | 204|205 | 2061207
ol 208 | 2es]210 | 211 | 212 | 213]214] 215 216]217] 218 | 219] 220]221 | 222]223
E| 224 | 225|226 | 227 | 228 | 2291230 | 231 | 232|233 | 234 [235 236]237 | 238239
DATA CAN BE TRANSFERRED ALONG THE DATABUS IN EITHER DIRECTION, Fi240 | 241242 | 243 | 244 | 2451246 | 247 § 248|249) 250] 251 | 252|253 | 2564|255
THIS DIRECTION IS CHOSEN BY THE, uP AND INDICATED TO THE EXTERNAL
UNITS BY A SINGLE 'RM’ LINE : WHEN HIGH, ‘1, THE uP IS RECEIVING DATA
FROM THE MEMORY, ‘READING’; WHEN LOW, '@, THE uP IS SENDING DATA TO HEX DEC_
THE MEMORY, ‘WRITING’. ALL INFORMATION USED BY THE uP TRAVELS 100 256
ALONG THE DATABUS, INCLUDING THE INSTRUCTIONS. SO THAT THE uP 200 512
KNOWS WHERE ITS INSTRUCTIONS ARE IT HAS A TWO BYTE (16,4 BIT) g% ;3421‘81
REGISTER CALLED THE PROGRAM COUNTER, ‘PC’, WHICH POINTS AT THE 1000 4006
INSTRUCTIONS BEING EXECUTED. THE MEMORY CAN BE VIEWED AS A BOOK 2000 8192
OF 256 PAGES, THE PARTICULAR PAGE BEING DECIDED BY THE MOST 2000 16384
SIGNIFICANT 8 BITS (BITS 15—8) OF THE 16 BIT ADDRESS, EACH PAGE CON- - 8000 32768
TAINING 256 BYTES, THE PARTICULAR BYTE BEING DECIDED BY THE LEAST 10000 65636
SIGNIFICANT 8 BITS (BITS 7—@) OF THE 16 BIT ADDRESS.
e s - APPENDIX D ACORN MONITOR ADDRESS INFORMATION
16 BIT ADDRESS_ __» | MEMORY| __<_ 5~ ~ONE BYTE OF DATA ADDRESS LABEL COMMENT
7 i 0000,0001 MAP LOW AND HIGH BYTES OF THE M ADDRESS
0002,0003 GAP LOW AND HIGH BYTES OF THE GO ADDRESS
0040005 PAP LOW AND HIGH BYTES OF THE BREAKPOINT ADDRESS
0006,0007 FAP LOW AND HIGH BYTES OF THE TAPE FROM ADDRESS
0008,0009 TAP LOW AND HIGH BYTES OF THE TAPE TO ADDRESS
IN THE KIT, PAGES FE; ¢ & FF; ¢ ARE OCCUPIED BY A NON-ERASEABLE PROGRAM 8332‘ 2? SEEEEQ ? ggmﬁmg Q ':;EEE EEEQE:
TO INTERFACE BETWEEN THE MICROPROCESSOR AND THE KEYBOARD & o00C R2 REGISTER 2: CONTAINS Y AFTER BREAK.
DISPLAY UNIT.TOSTART THE uP IN THIS PROGRAM (AT THE CORRECT PLACE) 300D R3, KEY REGISTER 3: TEMPORARILY P AFTER BREAK,
THERE IS A RESET BUTTON WHICH INITIALIZES THE PROGRAM COUNTER. IN CONTAINS LAST PRESSED KEY FOR DISPLAY
PAGE 9@, THERE IS SOME ALTERABLE MEMORY, OF WHICH THE BOTTOM IF, ¢ OOOE REPEAT MSB=1SETS REPEATEDLY SCANNED DISPLAY,
BYTES ARE GIVEN SPECIAL USES BY THE FE, 4 & FF; 4 MONITOR PROGRAM, SO, OTHERWISE SINGLE SCAN.
UNLESS PRESSED FOR SPACE, IT'S BEST TO STAY OUT OF THEM. 000F EXEC EXECUTION STATUS OF THE KEY PROCESSING

ROUTINE

A

ASL
ROL
ROL
A, X
LSR
ROR
ABSOLUTE
ROR
AX
STX
LDX
DEC
INC

s

ORA
ASOLUTE J ABSOLUTE
AND
AND
A X
EOR
ADC
ADC
AX
STA
LDA
LDA
A X
CMmP
SBC

ABSOLUTE] ABSOLUTE] ABSOLUTE
ABSOLUTE} ABSOLUTE] ABSOLUTE
ABSOLUTE| ABSOLUTE] ABSOLUTE
ABSOLUTE} ABSOLUTE] ABSOLUTE

ABSOLUTE] ABSOLUTE] ABSOLUTE]

LDY
AX

ABSOLUTE] ABSOLUTE] ABSOLUTE
INDIRECT} ABS

BIT

JMP

JMP
STY
LDY
CPY
CPX

ROLA
RORA
TXS
TAX
DEX
NOP

ORA |ASLA

IMMED
AND
IMMED
EOR
IMMED
IMMED
LDA
IMMED
CMP
IMMED
SBC
IMMED
AY

2ND DIGIT
PHP
PLP
PHA
PLA
TYA
TAY
INY
INX

DISSASSEMBLY CHART

Z X
ROL
LSR
FOR
STX
LDX
ZERO] ZERO| ZERO
DEC
INC

ZERQ] ZERO|] ZERO

ORA | ASL
ZERO| ZERO
ORD | ASL
Z,X
AND

ZERQ] ZERO] ZERO
ZERO] ZERO
ZERO| ZERO

EOR
ADC
STA
LDA
CMP
ZERO] ZERO{ ZERO
SBC

ZERO] ZERO} ZERO

BIT

STY
LDY
CPY
CPX

LDX
IMMED

ORD
(1.X)
ORD
(1),
AND
1x)
AND
(1),Y
EOR
(1.X)

{EOR
{),Y
ADC
(1,X)
ADC
(1).Y
STA
{1,X)
STA
(1).Y
LDA
LDA
),y
CMP
CMP
(1),Y
SBC

IMMED {(1,X)

IMMED {(1,X)

IMMED [(1,X)
F] BEQ

BPL
LDY
CPY
CPX

1ST DIGIT
0] BRK

3] BMI

41 RTI

5] BVC

61 RTS
718vS

9¢ BCC

B| BCS

D{ BNE

A
Cc
E

1

2,2 THE MONITOR COMMANDS M,1,!
THE FIRST FEATURE OF THE MONITOR IS THE MEMORY INSPECT & MODIFY
CONTROL SWITCH ON, AND PRESS THE RESET BUTTON:

MODE ADDRESS DATA

THEN PRESS THE MODIFY KEY, M. THIS GETS YOU INTO THE MEMORY
INSPECTION AND MODIFY MODE. THE MODE INDICATOR SHOWS ‘A’ FOR
ALTER. THIS FIRST PHASE OF ‘A" ALLOWS YOU TO CHOOSE ANY ADDRESS
IN MEMORY.

A. X X X X

APPEARS ON THE DISPLAY,WHERE X REPRESENTS
ANY OF THE 16 HEX CARACTERS SIGNIFYING THE ADDRESS.NOW PRESS THE
KEYSF,E, @, (IF YOU MAKE A MISTAKE, E.G. PRESSED F, D, JUST START
OFF FROM THE F AGAIN). AS EACH KEY IS PRESSED THE INFORMATION
ON THE DISPLAY SHIFTS TO THE LEFT:

A. "XXXF
A. XXFE
A. XFE®
A. FEQO

AND SO YOU END UPWITH FEO® ON THE DISPLAY. PRESS ANY OF THE EIGHT
COMMAND KEYS (IT DOES NOT MATTER WHICH) AND YOU CAN INSPECT THE
CONTENTS OF THIS MEMORY ADDRESS. THIS IS PHASE TWO OF MODE ‘A’ AND
ALLOWS YOQOU TO INSPECT AND ALTER THE DATA OF THE MEMORY ADDRESS
CHOSEN IN PHASE ONE.

A. FEOO . A0

THIS IS THE INFORMATION STORED AT THE VERY BEGINNING OF THE
MONITOR. IF YOU PRESS THE 1 KEY

A. FEO1 . 06
UP WE GO. NATURALLY THE { KEY BRINGS BACK
A. FEOO . AQ

AND EITHER KEY MAY BE USED ANY NUMBER OF TIMES IN SUCCESSION, NOW,
IF, WITHOUT TURNING OFF, YOU PRESS RESET

AND THEN M
A. FEOO

THE SYSTEM HAS REMEMBERED THE ADDRESS YOU WERE USING (WHICH
DOESN'T HAVE TO BE FE®®) TO INSPECT MEMORY NOW ENTER THE ADDRESS
0030 AND TERMINATE WITH ANY COMMAND KEY

A. 0030 . XX

@030 1S AN ADDRESS IN THE ALTERABLE SECTION OF THE MEMORY.
PRESSING DIGIT KEYS NOW WILL CAUSE THE INFORMATION IN @30 TO
CHANGE (WHAT HAPPENS AT FE@@?? TRY IT! YOU CANNOT WRITE INTO THE
MONITOR PROM, {i.e. THE PROGRAMMABLE READ ONLY MEMORY). PRESS @, 1.

A 0030) 01

PRESS 2,3
A. 0030 . 23

AS BEFORE INFORMATION ISSHIFTED IN UNTIL TERMINATED BY ANY
COMMAND KEY. BUT, UNLIKE THE ADDRESS FETCHING PHASE, THE COMMAND
KEY WILL BE EXECUTED. USEFUL TERMINATORS ARE THE M, t & | KEYS.
PRESS 1.

A. 6031 . XX
PRESS 4,5

A. 0031 . 45
PRESS |

A. 0030 . 23
& 1 AGAIN

A 0031 . 45

YOU CAN GO UP AND DOWN INSPECTING & MODIFYING THE MEMORY
CONTENTS IF THERE IS NO ALTERABLE MEMORY (E.G. A PROM) AT A
PARTICULAR ADDRESS, THE INFORMATION WILL NOT CHANGE. TO CLOSE
THIS SECTION WE'LL MAKE THE MONITOR DO A LITTLE TRICK. M,0,0.0,E, k
{ k =ANY COMMAND KEY)

AAM=>Z,Mg >V, My >N
M—PCL M + 1 —>PCH

BYTES
TIME
X-M
Y-M
M—=>X
M=>Y
X=>M
Y —>M

«<[A <o

IV REGISTERS OTHER THAN ACCUMULATOR

3
[IT]
<
2 s
= M w© (=T | ss
>
~ [31]
< o3 - RN 8. 11 2
’_
:~ + Q >'§ L+
o< | T lal |l [V== O
w
‘—
=)
5
[7)]
[i1] 8] X w
< N < Yau g % E
>
N
X, 8
N w W w w w w
N < oW < N © 3
x
(o] o
o]
w < ><~ © %]
N] ™ e3P 8 8§ ¢ %8
T 0 O
: : g2
wi oI
2 N 888 ¢ 8§ 8l9¢
g 0 ggd
z Z La
7]] o w
Luw LI.ILU >N
ga > 0o 58 0 o o ola®
0Q WoNN NN 0gQ MM NN NST
<3 zZ 2z.122Z2 <3 z2zz z z z|29
- z
i Tk oo w - EE z3
< to Tl Lo 4 O
= 2 FEwnon £ 3 I &2 - = R
w ow wn s = » ogw [o EIZ
ZF oolS 3 o o & sl&<
! > > w 1 = Q I < +
< w i w w [} o
Jomu cxT® —_——d g2 ® 3 xlof
a 3T o, x> > T S v 2 w wleo
< << W w w g T E 1=
o Ovaaasan - & I _cx Oorkhk & z
« onzz%52<55| 8 « FE<g GZI W
ui 848823322 | @ 2z 895 bE|og
> J2003dJuwon = > <Jmao JEX&E «© >0
] I 78 <z
P4 4 w
Q E S Es
g EoXraX>x> = w 7 Yo & 3 & &+
= o 4
s s 65233551 > 5 2 a2 9 & clit

(@ >N)

=

”8:F8

11 IMPLIED. SINGLE BYTE WITH NO ADDRESS MODE

o« . .
. O Qg O
g u oz z z z 3
<4 = 0 w0 o
4 < T 7] a0 =
35 < w W Ix
s E 1 o r o o
= >F a) o 0 <
o % « o o o o cZ
QO & <£ <« 4 <« OO
Guy G 5 £ s iE
w] (@) o«
<g< P E £ E E2
2%, =z S S 9 g
;2;!— w = S =) -]
owo% @ Fﬂ
vywuxE g0 > S O o«
£~ wd Q 0O O O
Jgab o« < < « O w
L= [| | | |
o~ o~
= o
> > 4T g
c % 20 0000
< iz t <o afdgd
Z e3 -t iy + et
@ g9 I | ow XX XX
s N+t ++ + + +
= E L8R |« S8
& VST SSBRS
c X > +t+os SEsSes
« g TT??& 8gouw vrLun
= ~—
M D>~ sgii l 1&111X>x<m<
O o N o R T4+ + +++++T 1Y
O -~ wseasaeX>X>0 <auvwn O nunnnlddn X X>
o]
2
= K NNNNNNNNN ~ © NNNNNN
Do Lwm <o g
S 8 ©28383388¢% S & 2 2 123383
%)
Q
< | O Q [TS R
J1N NN NN D MMM
iz on_>zZ2z2z22 zZ Z <« Z2z2z222Z
w w
< a) £ =
= 2 < 5 3 S E
w w o E E i 2
u o= = <« « o e}
- g8l & & b i
o 4§§g T e o < 2 > X>x<od
T u - OO0Op0O00
5 >IT x> Pz 3@ 3 & = s PRPRFFF
Soc X>L o o v = I
o CZuLfoo = W om b o @ O «aLnxXX>
= cofPunn< E w = @© o
[cuE>pazzu ¢ Q 9O % F oo L Cocoacaoco
w uDZO ==J o O Wwwwwuw
J1 s - >>>>g W (i vy w w pd Z [N TINTINTINTINTH
S|z 3 segeogzed g1e<s L g B £ 285449
= ad
clE ﬁmmw%%%%@ 0%544 = = i B o R - ¢
Wl @€ addd£<€<£<0 03955 O O w w cCcoecocoeoc
>l o vovooomomomd Zooaaod @© @© 9o« C FkeFFEFPF
=
o«
@]

5 g ¥ opn_>X> I o g i é X>xdnd
| — X > @ a <o - [72) x %]
Zlon @© J2J3J3wWuw nw OTr i O O - X X >
S|12 ©» 0000002294 z3fdd € & « ke SEeREE

PRESS 1,6. (IF YOU GET BORED, YOU CAN GO THE OTHER WAY BY 1,7)
(ESCAPEBY RESET). THE MONITOR SCANS THROUGH ALL MEMORY
SUCCESSIVELY SHOWING ITS CONTENTS (DATA). WHERE THERE IS NO

MEMORY AT ALL YOU WiLL PROBABLY SEE THE FIRST TWO ADDRESS
DIGITS.

2.3 AT LAST, APROGRAM
2.3.1 ASSEMBLY LANGUAGE, MACHINE LANGUAGE, THE INSTRUCTIONS
LOAD, STORE AND JUMP

A PROGRAM IS THE NAME FOR A SET OF STORED COMMANDS THAT THE
MICROPROCESSOR WILL EXECUTE. THESE ARE STORED IN BINARY, SINCE
THAT’S ALL THAT ANYTHING CAN BE STORED IN, (ENTERED BY YOU IN HEX)
AND ARE INDISTINGUISHABLE FROM ANYTHING ELSE. IF IT GETS THE
CHANCE THE uP (MICROPROCESSOR) WILL BUSY ITSELF TREATING
INFORMATION WHICH YOU MEANT AS DATA AS A PROGRAM. IT PROBABLY
WON'T BE DOING ANYTHING INTELLIGENT AND WILL HAVE TO BE
SUMMONED BACK WITH THE RESET KEY. SOME SORT OF TRANSLATION
BETWEEN THE STORED BINARY/HEX AND YOU IS NEEDED. 10101161, MEANS
A GREAT DEAL TO THE uP BUT LITTLE TO YOU. IT ACTUALLY MEANS “LOAD
THE ACCUMULATOR WITH THE CONTENTS OF THE MEMORY ADDRESS
DEFINED BY THE FOLLOWING TWO BYTES, OF WHICH THE FIRST IS THE
LEAST SIGNIFICANT ADDRESS”. THIS IS A LITTLE LONG FOR WRITING
STRAIGHT INTO A PROGRAM AND IS USUALLY ABBREVIATED TO LDA ABS,
OR JUST LDA.ABSOLUTE MEANS ANYWHERE IN THE 64K. THE 6502 CAN
ADDRESS 64K OF MEMORY WHICH IS DIVIDED INTO PAGES 256 BYTES LONG
THE FIRST PAGE IS CALLED ZERO PAGE. LOCATIONS IN ZERO PAGE CAN
BE ADDRESSED BY JUST ONE BYTE. THERE ARE SPECIAL INSTRUCTIONS TO
DO THIS. AT THE END OF THE MANUAL THERE IS A LIST OF ALL THESE
MNEMONICS WITH THEIR HEX EQUIVALENTS IN APPENDIX B. SO IF WE WROTE
THE PROGRAM IN MNEMOMICS IT WOULD LOOK LIKE.

LDA FE 00
AND WE WOULD TRANSLATE IT FOR THE uP AS THE THREE BYTES

AD LOAD ABSOLUTE

00 LOWER BYTE OF ADDRESS

FE HIGH BYTE OF ADDRESS
WHICH WOULD CAUSE THE uP TO PUT A® (THE DATA STORED IN FE®®) INITS
ACCUMULATOR (REMEMBER USING THE MONITOR TO LOOK AT FE@®?). THE
TRANSLATION PROCESS IS CALLED ASSEMBLING AND COMPUTER PROGRAMS
WHICH DO IT ARE CALLED ASSEMBLERS. A RESIDENT ASSEMBLER IS ONE
THAT RUNS (OPERATES) ON THE SAME MACHINE THAT IT ASSEMBLES FOR;
A CROSS ASSEMBLER RUNS ON A DIFFERENT MACHINE. THE MNEMONICS
LDA, STA etc ARE OFTEN CALLED ASSEMBLY LANGUAGE, THE GENERATED
BINARY IS CALLED MACHINE CODE.
WE CAN LOAD THE ACCUMULATOR IN TEN OTHER WAYS; HERE ARE TWO OF
THEM.

INSTRUCTION

LENGTH
IN EXECUTION
BYTES TYPE HEX MNEMONIC TIMEuS BRIEF EXPLANATION
2 1 A9 LDA # 2 PUT THE NEXT BYTE IN
ACCUMULATOR. “LOAD
IMMEDIATE'".
2 2 Ab LDA Z 3 SHORTENED FORM OF
LOAD ABS @8XX 'LOAD
ZERO PAGE'.
3 3 AD LDA 4 LOAD A ABSOLUTE.

THE FIRST OF THESE INSTRUCTIONS IS VERY IMPORTANT. |F WE KNOW THAT
WE WANT A® IN THE ACCUMULATOR THEN IT ISWASTEFUL TO FIND A
MEMORY LOCATION WHICH HAPPENS TO CONTAIN IT, SINCE TWO BYTES ARE
NEEDED (GENERALLY) TO SPECIFY WHERE IT IS AND SO WE IMPLY, BY THE
IMMEDIATE INSTRUCTION, WHERE IT IS & ACTUALLY ENTER IT IN THE
PROGRAM. THERE ARE COMPLEMENTARY STORE ACCUMULATOR ‘STA'
INSTRUCTIONS TO LDA ZAND LDA.

BYTES TYPE HEX MNEMONIC TIME uS

2 2 85 STAZ 2 STORE A ZERO PAGE
(IN THE FIRST 256 BYTES)
3 3 8D STA 3 STORE A ABSOLUTE

(ANYWHERE IN MEMORY)
WE CAN ALSO LOAD THE PROGRAM COUNTER. THE PROGRAM COUNTER IS AN
INTERNAL REGISTER THAT POINTS TO THE NEXT LINE OF THE PROGRAM.
THE MNEMONIC FOR THIS IS NOT LDPC BECAUSE WHEN THE P.C. IS LOADED
WITH A NEW VALUE IT GIVES THE MICROPROCESSOR A DIFFERENT PLACE TO
LOOK FOR INSTRUCTIONS: THE PROGRAM JUMPS. SO ‘LOAD P.C.WITH NEXT
TWO BYTES' (LDPC } ISJMP, THIS IS REFERRED TO AS JUMP ABSOLUTE
SINCE THE PROGRAM JUMPS TO A NEW ABSOLUTE ADDRESS. SO IF WE ARE
NOT IN THE MONITOR ANDWANT TOBE,JMP FF@4WILL ENTER THE MONITOR.
NOW WHAT HAPPENS IF THE FOLLOWING PROGRAM IS RUN?

LDA FEGQ
STA Z 20
JMP FFo4

THE FIRST INSTRUCTION GETS THE CONTENTS OF FEQ®, AND PUTS IT IN THE
ACCUMULATOR. THE SECOND STORES THE ACCUMULATOR IN LOCATION
@020 . THE FIRST TWO @'S REFER TO ZERO PAGE AND ARE ASSUMED BY THE
PROCESSOR IN THE ZERO PAGE MODE. THE THIRD GETS BACK TO THE
MONITOR, SO THAT YOU CAN INSPECT LOCATION 2@. THIS READS AS.

o030 AD (OPCODE) LDA FEQQ
0031 00 (DATA)

0032 FE (DATA) .

0033 85 (OPCODE) STAZ20 ;
0034 20 (DATA) ,
035 4C (OPCODE) . JMP FF@4

0036 04 (DATA)
0937 FF (DATA)

Il RELATIVE: RELATIVE ADDRESSING MODE

2BYTES 2+t CYCLES

MNEMONIC VERBAL

BCC BRANCH IF CARRY CLEAR 99 BRANCHIFC=0
BCS BRANCH IF CARRY SET BO C=1
BEQ BRANCH IF EQUAL {TO ZERO) F® Z=1
BMI BRANCH IF MINUS 30 N=1
BNE BRANCH IF NOT EQUAL D® Z=0
BPL BRANCH IF PLUS 19 N=0
BVC BRANCH iIF OVERFLOW CLEAR 50 V=0
BVS BRANCH IF OVERFLOW SET 70 V=1

A+M+C—>A
A>M—>A

A—-M
A—-M+C—>A

BYTES
CYCLES
SPEED uS
AVM—=>A
M—>A
AVM—A
A-=>M

2

5+
71
31
D1
51
B1
11
F1
91

ax) .y

61
21
c1
41
A1l
01
Et
81

AY
4+
79
39
D9
59
B89
19
F9
99

4+

7D
3D
DD
5D
BD
1D
FD
9D

6D
2D
CcD
4D
AD
@D
ED

ZX ABSOLUTE AKX
8D

75
35
D5
55
B5S
15
F5
95

ZERO

65
25
Cc5
45
AbB
05
ES
85

IMMED
2

2

69

29

Cc9

E9

MODE
FLAGS IN P
AFFECTED
NZCV

NZC

NZCV

ADDRESSING

LOAD ACCUMULATOR
ISTORE ACCUMULATOR

LOGICAL EXCLUSIVE
LOGICAL OR
JSUBTRACT WITH

ADD WITH CARRY
LOGICAL COMPARE
OR

LOGICAL AND
BORROW/CARRY

| ACCUMULATOR REFERENCE: ACCUMULATOR, OPERATION, MEMORY - ACCUMULATOR

APPENDIX B INSTRUCTION SET

MNEMONIC]VERBAL

ADC
AND
CMP
EOR
LDA
ORA
sBC

STA

THE ADDRESS #03p IS THE STARTING ADDRESS OF THE PROGRAM. THIS
PARTICULAR PROGRAM WILL WORK WITH ANY STARTING ADDRESS — IT IS
SAID TO BE ‘POSITION INDEPENDENT’ OR ‘RELOCATABLE’ — BUT OTHER
PROGRAMS MAY NOT. IF YOU ARE NEW TO THE GAME, IT WILL BE EASIER IF
YOU ENTER PROGRAMS AT THE STARTING ADDRESS SHOWN IN THE MANUAL.

2.3.2 ENTERING A PROGRAM, THE GO COMMAND

TO ENTER THIS PROGRAM, WE'LL GO THROUGH IT STEP BY STEP.

I ENTER THE STARTING ADDRESS: PRESS M,0.0,3,0, k

Il ENTER ABYTE OF DATA AD

Il USE THE t KEY TO TERMINATE DATA ENTRY AND STEP UP
— CONTINUEWITH 0,8,1,F,E,18512,0,14,C1041FF

[V CHECK THAT THE PROGRAM IS ENTERED CORRECTLY BY, E.G, USING {
TO GO BACK DOWN THROUGH IT.
— REMEMBER THAT MISTAKES AT KEY ENTRY (E.G. PRESSED 8,6) MAY BE
CORRECTED BY CONTINUING (PRESS 8,5) —

NOW THAT THE PROGRAM 1S LOADED PRESS ONLY ONCE THE ‘GO’ (G) KEY

K XXXX

APPEARS THE K (R,} REMINDS YOU OF TWO THINGS: 1 THIS IS A DIFFERENT
STORED ADDRESS TO THE A. ADDRESS. 1L YOU CAN'T GO BACK! (UNLESS
YOU EITHER PRESS RESET OR ENTER ADDRESS FF@4, THE MONITOR ENTRY
ADDRESS, AND GQ) THE NEXT COMMAND KEY YOU PRESS WILL CAUSE THE
4P TO DO A KAMI-KAZE DIVE TO THE ADDRESS SHOWN, SO ITSASWELL TO
GET IT RIGHT!! ENTER 0,0,3,0

K. 0030 .

AND PRESS ANY COMMAND KEY. NOTHING HAPPENED? WELL IT DID, REALLY,
IT JUST HAPPENED VERY QUICKLY:

PROGRAM EXECUTION TIMES, uS
LDA FEOQ 4
STA Z 20 3
JMP FFp4 3

TOTAL 10,0 uS
IT TOOK TEN MILLIONTHS OF A SECOND TO HAPPEN. WE'RE NOW BACK IN
THE MONITOR. PRESSING ANY DIGIT KEY WILL CAUSE THE (BY NOW)
FAMILIAR DOTS TO REAPPEAR. PRESS M,0028 k

A. 0029 . A0

WHICH CHECKS THAT THE PROGRAM ACTUALLY DID WORK. YOU COULD
CHANGE 0020 AND RUN THE PROGRAM AGAIN BY THE KEYS

F,F,G,G,MM
WHICH SUCCESSIVELY PUT FF IN ¢@¢20, RUN THE PROGRAM AND RE-EXAMINE

LOCATION 0020. A LOT QUICKER FOR YOU THE SECOND TIME, WASN'T IT?
THIS IS BECAUSE M & G REMEMBER WHAT THEY WERE POINTING AT. LET'S
MAKE THE PROGRAM BETTER. AT THE MOMENT WE HAVE NO IDEA IF IT RAN,
AND WE DON'T KNOW IF IT RAN CORRECTLY UNTIL WE LOOK AT @@20. |F THE
PROGRAM WROTE OUT THE BYTE ON THE DISPLAY ASWELL AS STORING IT
IN 0020, WE'D KNOW THAT IT HAD ALL HAPPENED. INSIDE THE ACORN
MONITOR PROGRAM IS A SET OF INSTRUCTIONS TO WRITE A BYTE ONTO THE
TWO RIGHT HAND DISPLAY DIGITS. THIS PROGRAM IS LOCATED AT FE60 AND
EXPECTS THE BYTE TO BE DISPLAYED TO BE IN THE ACCUMULATOR, WHICH
IT1S. THE PROGRAM DESTROYS THIS BYTE AS IT PUTS IT ONTO THE DISPLAY
SO WE MUST PUT IT IN 0020 BEFORE USING THE PROGRAM.

2.3.3 INSTRUCTIONS JMP, JSR

IF WE SIMPLY WENT JMP FE60 THISWOULD CORRECTLY EXECUTE THE
PROGRAM BUT WE WOULD BE LEFT IN THE MiDDLE OF THE MONITOR SOME-
WHERE SINCE THE PROGRAM DOES NOT HAVE AN ADDRESS TO JUMP BACK
TO. WE CAN GIVE IT SUCH AN ADDRESS WITH THE INSTRUCTION JSR (OPCODE
20 HEX) THIS IS EXACTLY LIKE A JUMP BUT IT SAVES THE PROGRAM
COUNTER BEFORE JUMPING. THEN THE SINGLE BYTE INSTRUCTION RTS
{OPCODE 60 HEX) RESTORES THE PROGRAM COUNTER AND WE GET BACK
AGAIN, JSR IS “JUMP TO SUBROUTINE" AND RTS IS “RETURN FROM
SUBROUTINE"”. THE PROGRAM AT FE6@ HAS AN RTS ATTACHED AT ITS END,
AND SO CAN TRANSFER CONTROL BACK TO THE PROGRAM WHICH CALLED IT.
OUR NEW PROGRAM IS 3BYTES LONGER:

0030 AD LDA FEQQ
P31 00
0032 , FE
0033 85 STAZ 20
0034 20
0035 20 ~ JSRFE6Q
0036 60
. 0a37 FE .
. 0038 jac JMP FFQ4
0039 04
0O3A FF J

AND WE WILL HAVE TO ENTER 6 BYTES FROM 0935 TO 0@3A WITH

M@,035 k, 208 t6D1FET4CEDA1FF.WEHAVENT CHANGED THE START

OF THE PROGRAM SO G, GWILL RUN IT.
K. 0030 . A0
APPEARS MEANING THAT 0020 HAS AGAIN HAD AP WRITTEN INTO IT.

INSTEAD OF STORING THINGS IN 002¢, LET'S USE ITS INFORMATION AS PART
OF A LOGICAL OPERATION.

APPENDIX A
64 CHARACTER ASCII ON ACORN'S 7 SEGMENT DISPLAY

ASC!i CODE DISPLAY CHARACTER HEX ASCIICODE DISPLAY CHARACTER HEX

1) 3 @ 5F 20 00
1 =1 A 77 21 l, ! 86
2 - B 7C 2 1 “ 2
3 C C 58 23 0 # 63
4 | D BE 24 C £ 38
5 E E 7 25 ~ % 2D
6 [S F 71 26 = & 7B
7 O G 3D 27 ' ' @®
8 H H # 28 C. (B9
9 T | 05 29 1.) 8F
A 3 J oD 2A H * 76
B = K 75 28 — + YY)
C L L 3 2C | , 04
D M M 37 20 — - a9
E — N 54 2E . } 80
F (| 0 5C 2F — / 52
10 P P 73 D | 0 3F
1 q Q 67 31 | 1 06
12 — R 50 3R = 2 5B
13 5, S ED 33 3 3 4F
14 = T 78 A] 4 &
15 L U ac 35 5 5 6D
16 L \Y 1c 36 B 6 7D
17 H w 7E 37 1 7 @7
18 = X 49 3 = 8 7F
19 b | Y 6E 2 — 9 6F
1A = Z BD 3A ' : 82
1B C [K] 3B . ; 84
1C] \ 64 3C — (46
1D 3] oF 3D = = 48
1E ™ A 23 3E —) 70
1F - - 78 3F — ? D3

PROGRAM. THE STRATEGY OF THE PROGRAM IS NOT OBVIOUS, AND IS LEFT
AS AN EXERCISE TO THE READER. A SMALL PRIZE WILL REWARD THE
SUBMISSION OF A SHORTER, FASTER PROGRAM; NOTE THAT WORKSPACE
REQUIREMENTS CONTRIBUTE TO THE LENGTH!

8 QUEENS PROGRAM

0200 F8 MAIN SED

0201 A2 20 LDX #20

@203 84 1F STY COUNT — CLEAR COUNT

0205 84 20 STY ROW — CLEAR ROW OCCUPIED
0207 84 29 STY LEFT — CLEAR LEFT DIAGONAL ATTACKS
0209 84 32 STY RIGHT — CLEAR RIGHT DIAGONAL ATTACKS
0208 20 16 @2 JSR TRY — FIND THE NO OF WAYS
@20E A5 1F LDA COUNT

0210 20 60 FE JSR RDHEXTD — DISPLAY ANSWER
@213 4C 04 FF JMP RESTART

0216 BS 00 TRY LDAZX 09 — FINISHED YET?

@218 C9 FF CMP #FF

¢21A DO @7 BNE CONTINUE

@921C A5 1F LDA COUNT — FINISHED, SO INCREMENT COUNT
021E 69 09 ADC #00

@220 85 1F STA COUNT

0222 60 FINISH RTS

@223 15 09 ORAZX 09 — CURRENT LEFT

@225 15 12 ORAZX 12 — CURRENT RIGHT
0227 A8 LOOP TAY

@228 49 FF EOR #FF

@22A F@ F6 BEQ FINISH — NO CHANCE

@22c 95 18 STAZX 1B — CURRENT POSSIBLE PLACE
@22e C8 INY

922F 98 TAY

923p 35 1B ANDZX 1B

9232 A8 ™Y

@233 15 90 CRAZX 00

@235 95 01 STAZX 01 — NEW ROW

0237 98 TYA

@238 15 @9 ORAZX 09

923A QA ASLA

@238 95 0A STAZX 0A — NEW LEFT ATTACK
923D 98 TYA

@923 15 12 ORAZX 12

0249 4A LSRA

0241 95 13 STAZX 13 — NEW RIGHT ATTACK
@243 E8 INX

9244 20 16 02 JSR TRY

9247 CA DEX

0248 BS5 @1 LDAZX @1

@24A 49 FF EOR #FF

@24Cc 35 1B ANDZX 18

@24E 49 FF EOR #FF

@250 4C 27 @92 JMP LOOP

0253

2.3.4 THE LOGIC INSTRUCTIONS ‘ORA’, ‘AND’, ‘EOR’.
IF WE PUT 60, IN LOCATION 0¢20 (M,2,0,2,0, k, 6,0 : YOU SHOULD KNOW BY
NOW) AND ALTER THE STA Z INSTRUCTION AT 8033 TO, SAY, ORA Z (OPCODE

5 HEX) (THE PROGRAM READS LDA FE@D
ORA Z20
JSR FE6(
JMP FFg4)

WE HAVE A PROGRAM THAT DISPLAYS THE LOGICAL ‘OR' BETWEEN THE
CONTENTS OF FE®® (A@) AND 0020, (6@). THE HEX FOR ORA Z 1S @5 AND IT
CARRIES OUT A LOGICAL ‘OR' BETWEEN THE ACCUMULATOR AND THE
SPECIFIED LOCATION IN 2 PAGE. M,00,33, k 9,5 ISTHE MODIFICATION
TO THE PROGRAM, THEN SINCE WE STILL START AT @030, G,G RUNS IT :

K. 0030 . EQ
THE OPERATION WAS ‘OR’ : AQ 10100000
60 or 01190000 or
EQ 11100000

TRY CHANGING 9¢2¢ TO 40 AND RUNNING THE PROGRAM AGAIN IS THE
ANSWER WHAT YOU EXPECTED?

WE CAN CHANGE 9033 TO MAKE THE PROGRAM DO LOGICAL ‘AND’ OR
‘EXCLUSIVE — OR’. THE MNEMONICS AND OPCODES ARE:

AND 2 256 LOGICAL AND ACCUMULATOR AND Z PAGE
MEMORY
EOR Z 45,4 LOGICAL EXCLUSIVE-OR ACCUMULATOR AND

Z PAGE MEMORY
AND THE PROGRAMS WOULD READ

LDA FEQ® & LDA FE@®
AND Z 20 EOR Z20
JSR FEG0 JSR FE60
JMP FF04 JMP FFQ4

BY NOW YOU MUST BE GETTING TIRED OF THE A iN FE@® SO WE'LL CHANGE
THE PROGRAM TO READ

LDA Z21

EOR 220

JSR FE60

JMP FF@4
THE SPACE TAKEN UPBY LDA Z21 IS ONE BYTE LESS THAN THAT USED BY
LDA FE@P. WE COULD SIMPLY WRITE THE NEW TWO BYTES IN AT LOCATIONS
0031 & BP32 AND CHANGE THE GO ADDRESS TO @@31. THIS IS VERY SIMPLE
HERE SINCE THAT IS ALL WE HAVE TO DO. BUT IF THERE WERE MANY
REFERENCES TO @938 AS THE START OF THIS PROGRAM IT WOULD TAKE A
LONG TIME TO FIND AND CHANGE THEM ALL, AND IF WE DIDN'T CHANGE
THEM ALL SOMETHING WOULD GO WRONG. WE CAN'T MOVE THE REST OF
THE PROGRAM DOWN ONE BYTE: SOMETHING MIGHT BE REFERRING TO IT.
THE PROBLEM ARISES BECAUSE LDA 2 ISSHORTER THAN LDA. WE COULD
SIMPLY USE LDA WITH A ZERO PAGE ADDRESS BUT THIS TAKES A WHOLE uS

LONGER THAN LDA Z! THE SOLUTION IS TO USE LDA Z AND TO INCORPORATE
AN EXTRA BYTE IN 3330 AS PADDING. THIS MUST BE A SINGLE-BYTE
INSTRUCTION, THAT DOES NOTHING TO AFFECT THE PROGRAM, AND ONE IS
SPECIFICALLY PROVIDED

NOP EA “NO OPERATION"
THE PROGRAM READS
0080 EA NOP
0031 A5 21 19 LDA Z 21
0033 4_2%0/' EOR Z 20
0035660 FE JSR FE60
0038 4C 04 FF JMP FF@4

—NOTICE THE MORE COMPACT MODE OF WRITING IT DOWN. THIS IS MORE
CONSISTENT WITH THE WAY MNEMONICS ARE WRITTEN. IT IS EXACTLY
EQUIVALENT TO

0030 EA NOP
?@31 A5 LDA Z 21
9032 21

9333 45 EOR 220
034 20

@035 20 JSR FE6Q
?036 60

P037 FE

@38 4C JMP FF@4
0039 04

PO3A FF

AND ITWILL BE USED THROUGHOUT THE REST OF THE MANUAL:

THIS PROGRAM TAKES THE CONTENTS OF (WHICH MAY BE WRITTEN BY
PUTTING BRACKETS AROUND THE PARTICULAR ADDRESS) 8020 & 3021 AND
PRESENTS THEIR LOGICAL EXCLUSIVE — OR ON THE DISPLAY. APART FROM
THEIR LOGICAL FUNCTIONS, THESE OPERATORS ARE OFTEN USED TO
MANIPULATE SINGLE BITS. FOR INSTANCE ORA # @1 WOULD SET BIT @ OF THE
ACCUMULATOR, AND # FE WOULD CLEAR IT AND EOR # 01 WOULD COMPLENT
IT, ALLWITHOUT AFFECTING ANY OTHER BITS IN THE ACCUMULATOR.

2.3.5 ARITHMETIC INSTRUCTIONS ‘ADC’, ‘SEC’, ‘CLC".

FROM LOGIC OPERATIONS WE PROGRESS AGAIN TO ARITHMETIC. LOOKING
AT ORA Z,EOR Z, AND Z WOULD LEAD ONE TO ASSUME THE EXISTENCE OF
ADD Z.WELL, THERE ISN'T ONE, THERE'S ONLY ADC Z.

BYTES:2 ADCZ 65 “ADD WITH CARRY, ZERO PAGE"
1 SEC 38 “SET CARRY FLAG"
1 CcLC 18 “CLEAR CARRY FLAG"

THIS IS MOST UNUSUAL AND A TRAP FOR UNWARY PROGRAMMERS,
ESPECIALLY THOSE USED TO uPs WHICH POSSESS AN ADD INSTRUCTION: THE
CARRY FLAG MUST BE CLEARED BEFORE AN ADC (OR IT MUST BE IN A
KNOWN STATE E.G. SEC = { CLC
ADC # 00 ADC # 01 OR
'UNEXPECTED’ ANSWERS WILL APPEAR. WHEN THE uP LEAVES THE MONITOR
USING THE GO ROUTINE THE CARRY FLAG ISSET: FAILURE TO CLEAR IT
BEFORE AN ADC RESULTS IN AN ANSWER 1 GREATER THAN EXPECTED.

LI

3

THE METRONOME PRODUCES A PULSE AT THE TAPE OUTPUT PIN, PAG, WITH A
REGULAR PERIOD. THE "“UP” AND “"DOWN" KEYS WILL INCREASE AND
DECREASE THE PERIOD RESPECTIVELY. WITH SUITABLE ADDITIONAL
CIRCUITRY THIS COULD DRIVE A LOUDSPEAKER OR A 'STROBE’ LIGHT. IN
FACT A SMALL SOUND CAN BE OBTAINED BY SIMPLY CONNECTING A LOUD-
SPEAKER ACROSS THE TAPE OUTPUT AND EARTH PINS.

THE CONSTANTS USED AT PRESENT MEAN THAT THE PULSE IS OF 1/300 SEC.
AND THE DELAY BETWEEN PULSES CAN BE VARIED FROM 1/2¢ SEC. TO
ABOUT 13 SECS. YOU CAN DEFINE THE PERIOD BEFORE STARTING THE
PROGRAM BY PUTTING THE REQUIRED VALUE INTO MEMORY LOCATION
002¢. 20 WILL GIVE ABOUT 1 SEC BETWEEN PULSES, AND ANYTHING ELSE
PROPORTIONATELY MORE OR LESS. ONCE THE PROGRAM IS RUNNING THE
‘UP” AND ‘DOWN’ KEYSWILL INCREMENT AND DECREMENT THE PERIOD BY
ABOUT 1/2¢ SEC EACH TIME THEY ARE PRESSED. THEY ALSO RESET THE
CYCLE. THIS FACILITY COULD USEFULLY BE USED FOR FINE TUNING BUT
WOULD BE TEDIOUS FOR LARGE CHANGES OF PERIOD.

METRONOME
ADDR HEX LABEL INSTRUCTION COMMENTS
CODE

@o0 A9 1F LDA #1F

@202 85 OE STA REPEAT — SET DISPLAY TO SINGLE SCAN

0204 A9 40 PULSE LDA #40

@206 8D 22 OF STA 1ADDR — DEFINE PA6 AS QUTPUT

9209 8D 16 @E STA SET PIA6 — USE INS8154 SET BIT MODE

@20C 29 CD FE JSRWAIT — USE THE 300 BAND WAIT

@20F 8D 06 OE STA CLR PIAG — USE IN58154 CLEAR BIT MODE

0212 A6 29 LDXZ PERIOD

@214 26 OC FE DELZ JSR DISPLAY — LOOK AT KEYBOARD

@217 C9 16 CMP #16 — UPKEY?

9219 DO 04 BNE DOWN - NO

@218 E6 20 INCZ PERIOD — INCREASE PERIOD

@21D BO E5 BCS PULSE — CARRY WAS SET BY THE COMPARE:
ALWAYS

@21F C9 17 DOWN CMP #17 — DOWN KEY?

9221 DO 04 BNE DELI — NO

9223 C6 20 DECZ PERIOD — DECREASE PERIOD

@225 BO DD BCS PULSE — CARRY WAS SET BY THE COMPARE:
ALWAYS

9227 AQ 0OC DELI LDY #0cC — CYCLE TIME OF 1 %@ SEC.

@229 290 CD FE DELJ JSR WAIT

@22c 88 DEY

922D 10 FA BPL DELJ

@22F CcA DEX

02390 DO E2 BNE DEL2

9232 FO D@ BEQ PULSE — END OF THIS PERIOD SO PULSE

0234

4

THE EIGHT QUEENS PROBLEM IS TO FIND THE NUMBER OF WAYS IN WHICH
EIGHT QUEENS MAY BE PLACED ON A CHESS BOARD WITHOUT ATTACKING
EACH OTHER. THE PROGRAM FINDS 92 WAYS SINCE IT COUNTS ROTATIONS
AND REFLECTIONS, ALLPOSSIBLE POSITIONS ARE TRIED AS SOLUTIONS IN
THIS HIGH SPEED RECURSIVE (I.E. IS DEFINED IN TERMS OF ITSELF)

COUNTER KEYBOARD

ADDR HEX

001D
020

0022
0024
0026
0028
P02A
o02C
PO2E
0030
0032
0035
0037
0039
0038
003E
oON
0041
0043
0045
0048
0048
@#94D
o04F
0051
0053
0056

0058
DO5A
2058

905D
05D
QO5F

LABEL

CODE

20
99

co
Fo
c9
Fo
Do
c9
85
Fo
20

@C FE DisSP

A

07
1F
06
1
F1

o0 CHANGE

19

ED MORE

60 00
19
F7
£2

60 09 uP

45 09

CF
F6

69 @0 DOWN

4F 00
D9
F6

1F ZOOM

0E
0C FE
03
00
FF

FF
QE

COUNTER SUBROUTINE

ADDR HEX
CODE

@060
o062
2064
o066
ov67
?069
2063
?@6D
BO6F
0971

0073

Pa76

F6
Do
E6
38
BO
A5
Do
c6é
cé
A2
20
69

1A
o0
18

]
1A
@2
1B
1A
1A
64 FE

LABEL

INCR

DECR

NOT
UPDATE

INSTRUCTION

JSR DISPLAY
BCC CHANGE

CMP #° 07
BEQ DOWN
CMP # 06
BEQ UP
BNE DISP
cvP # op
STA COUNT
BEQ DISP
JSR INCR
DEC COUNT
BPL MORE
BMI DISP
JSR INCR
JSR ZOOM

BNE DISP
BEQ UP

JSR DECR
JSR ZOOM
BNE DISP
BEQ DOWN
LDA #1F
STA OE

JSR DISPLAY
BCC STOP

LDA # o0
RTS
LDA # FF

LDA # FF
STA OE
RTS

INSTRUCTION

INC CNTL
BNE UPDATE
INC CNTH
SEC

BCS UPDATE
LDA CNTL
BNE NOT
DEC CNTH
DECCNTL
LDX #IE

JSR QHEXTD1
RTS

COMMENTS

— START OF @01C

— LOOK FOR KEY

— CHECK IF CONTROL KEY CARRY
SET IF SO

INCREMENT NO OF TIME OF TEY

RAPID INCREMENT

RAPID INCREMENT

SET FOR ONE SCAN ONLY

CHECK IF KEY DEPRESSED CLEAR
IF ONE IS

RESET SO THAT JSR DISPLAY
WAITS FOR INPUT

COMMENTS

ANOTHER TRAP FOR THOSE USED TO DIFFERENT uPs IS THE DECIMAL FLAG.
INSTEAD OF A SINGLE “DECIMAL ADJUST"” INSTRUCTION TO ADJUST THE
RESULT OF BINARY ARITHMETIC ON B.C.D. NUMBERS TO B.C.D. THERE ARE
TWO INSTRUCTIONS
BYTES: 1 SED F8 "“SET DECIMAL MODE"

1 CLD D8 “CLEAR DECIMAL MODE"
WHICH INSTRUCT THE PROCESSOR TO DO AUTOMATICALLY (OR NOT DO) THE
ADJUSTMENT AFTER ARITHMETIC OPERATIONS. THIS RESULTS IN SHORTER,
FASTER PROGRAMS FOR HANDLING B.C.D. ARITHMETIC WHICH, MERELY
BY CHANGING THE DECIMAL MODE FLAG,WILL HANDLE BINARY ARITHMETIC.
IN ORDER TO FULLY UTILISE THE uP’s POWER THE MONITOR SUBROUTINES
FOR FETCHING KEYS & OUTPUTTING DATA TO THE DISPLAY HAVE BEEN
WRITTEN WITHOUT ARITHMETIC SO THEY MAY BE CALLED WITH THE
DECIMAL FLAG SET OR CLEARED & THEY WILL NOT AFFECT IT.
SO LET'S DO A DECIMAL ADDITION;

G02F F8 SED
oe30 18 CLC
@31 Ab 21 LDA Z21
?e33 65 20 ADC 2 20
0035 2060 FE JSR FE60
0038 4C04 FF JMP FF@4

OUR STANDARD PROGRAM HAS BEEN EXTENDED BACKWARDS BY ONE BYTE,
THE SED INSTRUCTION. THIS SHOULD BE INCLUDED (BY 0,02 ,F OTG- ——
THE FIRST TIME THE PROGRAM IS RUN, BUT MAY BE OMMITTED (K,3,8,3.0 1)
ON SUBSEQUENT RUNS. THIS LITTLE PROGRAM WILL TELL US THAT

22+ 11=33, ITWILLSAY THAT 35+ 26 = 61 AND THAT 50 + 51 = #1 WHOOPS!
THE PROGRAM AT FEG0 ONLY DEALSWITH PUTTING THE BYTE IN THE
ACCUMULATOR ON THE DISPLAY. IT PAYS NO ATTENTION TO THE CARRY
FLAG, INDEED IT CHANGES THE STATE OF THE CARRY FLAG ITSELF, SO
THAT WE CAN'T IMMEDIATELY CALL FE6@, HAVE IT WRITE ON THE DISPLAY

& RETURN THEN WRITE OUT THE STATE OF THE CARRY SOMEHOWWHAT WE
NEED 1S:

| SAVE THE CARRY FLAG

Il USE FE60

INGET THE CARRY FLAG BACK & WRITE IT OUT SOMEHOW

A FRENZIED SEARCH THROUGH THE MNEMONICS REVEALS THAT THERE ARE
NO MNEMONICS LIKE LDC {LOAD C) OR STC {STORE C)

A CLOSER LOOK AT THE MICROPROCESSOR IS REQUIRED.

CHAPTER 3: INSIDE THE 6502
SO FAR THE PROCESSOR'S INTERNAL WORKINGS ARE

3.1 THE ACCUMULATOR, PROGRAM COUNTER, STATUS REGISTER

7 ® BIT NUMBER
ACCUMULATOR

15 9

| PC | PROGRAM COUNTER

CARRY FLAG

|:D:] DECIMAL MODE FLAG

a

THE CARRY & DECIMAL MODE FLAGS HAVE BEEN TREATED SEPARATELY TO
DATE. THEY ARE ACTUALLY MEMBERS OF A SPECIAL REGISTER CALLED THE
PROCESSOR STATUS REGISTER,P.

INTERRUPT DISABLE
‘ ZERO (THIS FLAG 1 WHEN
7 I ¢ SOMETHING HAS BECOME @0)

piInlv|ils|oli|z]cl—carry
l L— DECIMALFLAG
BREAK COMMAND EXECUTED

OVERFLOW
NEGATIVE

CAN WE, THEN, USE LDP & STP? NO, THEY DON'T EXIST EITHER.(FUME). IN

ORDER TO SOLVE THIS PROBLEM WE MUST INTRODUCE THE STACK.

DID YOU WONDER JUST WHAT HAPPENED TO PC DURING A JSR? YOU WERE

TOLD THAT IT WAS ‘SAVED'. WHERE? HOW? IT WOULD BE TERRIBLE TO HAVE -
TO SPECIFY WHERE IT HAD TO BE STORED. WHAT'S NEEDED 1S SOME PLACE

WHERE IT CAN BE PUT DOWN AND PICKED UP AGAIN. IT WOULD BE GOOD TO

ALLOW NESTED SUBROUTINES:

ADDR HEX LABEL INSTRUCTION COMMENTS
CODE

9213 95 10 STAZ X 10

9215 A9 61 INSERT LDA #DuUCK — PUT NEW DUCK ON

9217 CA DEX — INNEW POSITION

0218 10 @2 BPL OLDX — BUT NOT OVER THE END OF THE
DISPLAY

921A A2 07 LDX #07

021C 95 10 OLDX STAZ X 10

@21E 86 20 STX 2 20

9220 A2 OE LDX #TIME — DISPLAY INTERVAL IS SET BY THE
BYTE LOADED INTO X

9222 20 ©C FE WAIT JSR DISPLAY

@225 C5 29 CMP Z 20 — HIT?

0227 FO @5 BEQ HiT

9229 CA DEX

@22A DO F6 BNE WAIT

g22c FQ E1 BEQ REMOVE — FINISHED WAIT TIME

922E A9 1C HIT LDA #DEAD DUCK — PUT IN A DEAD DUCK

0230 A6 20 LDX 2 20

0232 95 10 STAZ X 19

9234 A9 FF LDAH#EF. . B

9236 85 OE : STR'Z OE

@238 20 @C r@—) JSR DISPLAY — TEST FOR CONTINUATION

9238 99 C3 A BCC BEGIN

923D 4C 04 FF JMP RESTART — OR BACK TO THE MONITOR

023F \\

MISCELLANEOUS

1

THE COUNTER PROGRAM COULD BE USED AS A SUBROUTINE IN A LONGER
PROGRAM WHEN “JSR INCR'* AND “JSR DECR” WOULD INCREMENT OR
DECREMENT THE DISPLAY. {F THE PROGRAM APPENDED IS ALSO ENTERED
THE DISPLAY WILL INCREASE OR DECREASE RAPIDLY iF “UP" OF “DOWN"
KEYS ARE DEPRESSED. THIS WILL BE STOPPED BY ANY HEX KEY.ITWILL
INCREMENT BY THE INDICATED AMOUNT {F KEYS 1—F ARE DEPRESSED AND
WILL IGNORE ALL OTHER KEYS.

YOU SHOULD PARTICULARLY NOTICE THAT A JSR DISPLAY RETURNS WITH
THE CARRY BIT CLEAR AND THE ACCUMULATOR HOLDING THE VALUE OF
THE KEY PRESSED FOR THE NUMERICAL KEYS, AND THE CARRY BIT SET AND
THE VALUES -7 IN THE ACCUMULATOR FOR THE CONTROL KEYS. IF
MEMORY LOCATION @E, WHICH IS DEDICATED TO THE MONITOR AND SHOULD
NOT NORMALLY BE USED IN PROGRAMS, HAS THE MOST SIGNIFICANT BIT
CLEAR THEN JSR DISPLAY WILL SCAN ONLY ONCE, IF ITISSET IT WILL WAIT
FOR A KEY TO BE DEPRESSED BEFORE RETURNING TO THE PROGRAM. IT IS
A GOOD IDEA TO LOAD ITWITH ‘IF’ IF YOU WISH TO USE THIS FACILITY AS
OTHER VALUES MAY CAUSE YOU DIFFERENT PROBLEMS. AGAIN SEE THE
REST OF THIS MANUAL IF YOU REALLY WISH TO UNDERSTAND THE PROCESS.

ADDR

p27C 69 00
@27€ 46 2A
0280 69 09
9282 46 2B
p284 69 00
9286 4A

9287 Bp BF
p289 C6 1F
0288 DO ES8
@28D A2 03

028F BS 24
9291 95 20
@293 CA

0294 10 F9
0296 4C 90 02
0299 A9 00
929B A2 @7
@290 95 10
@29F CA

9240 190 FB
92A2 D8

92A3 A2 04
02A5 AQ @c?
@2AaY B5 1F
02A9 20 7A FE
02AC €GB8 %%
92AD e8 3%
02AE CA

@2AF D@ F6
9281 60

9282

2

LABEL

BAT

DSPGAP

CLEAR

AROUND

INSTRUCTION

ADC #00

LSR ANAL +2
ADC #00

LSR ANAL +3
ADC #00
LSRA

BCS ONEOFF
DEC COUNT
BNE CONT
LDX #03

LDAZX POSS
STAZX STACK
DEX

BPL BAT

JMP HUMMOV
LDA #0¢

LDX #07
STAZX D

DEX

BPL CLEAR
CLD

LDX #04

LDY #01 0%
LDAZX STACK —1
JSR HEXTD
WY Dg Y

ANY DEY
DEX

BNE AROUND
RTS

COMMENTS

— NOT A GOOD MOVE

— KEEP CHECKING THE MOVE

— GOOD MOVE, TRANSFER TO

ACTUAL STACKS

— OPPONENT.

— CLEAR THE DISPLAY FIRST

— CLEAR DECIMAL MODE
— DISPLAY STACKS

THE DUCKSHOOT GAME IS A SPEED TEST: YOU HAVE TO SHOOT THE FLYING
DUCKS. THEY SUCCESSIVELY ENTER FROM THE RIGHT AND FLY TOWARDS
THE LEFT AT A SET SPEED. YOU SHOOT A DUCK BY PRESSING ITS CURRENT
POSITION ON THE KEYBOARD. THE LEFT MOST DISPLAY IS @, THE RIGHTMOST
DISPLAY IS 7. WHEN A DUCK IS HIT IT DIES. THE GAME MAY BE RESTARTED

WITH ANY HEX DIGIT KEY

DUCK SHOOT

ADDR HEX
CODE
0200 A9 IF
9202 85 @E
0204 A9 00
0206 A2 @7
0208 86 20
020A 95 19
#20C cCcA
920D 10 FB
020F A9 00
9211 A6 20

LABEL

BEGIN

CLEAR

REMOVE

INSTRUCTION

LDA #1F
STA Z OE
LDA #00
LDX #07
STX Z 20
STAZ X 10
DEX

BPL CLEAR
LDA #00
LDX Z 20

COMMENTS
— SINGLE SCAN DISPLAY ROUTINE

— CLEAR THE DISPLAY

— TAKE THE OLD DUCK OFF

'F

MAIN PROGRAM

JSR ALBERT — ALBERT PROGRAM

JSR ALGERNON —_— ALGERNON PROGRAM

\

WE CAN'T JUST SAY THAT PC IS TO BE SAVED IN LOCATION, SAY, L& M —~WE
WOULDN'T GET BACK FROM ALBERT SINCE THE CALL TO ALGERNON WOULD
HAVE DESTROYED THE NECESSARY INFORMATION IN L & M. (IT ISWORTH
NOTING HERE THAT L & M COULD BE "“CALLED'* —2 "CALLED" —1. THEN A
CALL TO ALBERT AS A SUBROUTINE WOULD STORE THE RETURN ADDRESS
JUST BEFORE THE START OF ALBERT ALLOWING NESTED SUBROUTINES AS
ABOVE. A PROBLEM IS THAT THIS DOES NOT WORK WITH READ ONLY
MEMORY, LIKE THE MONITOR).

3.2 THE STACK POINTER

WE NEED SOMETHING WHICH WILL DECIDE WHAT L & MARE TO BE,
DEPENDING ON WHICH SUBROUTINE WE ARE IN. AN OBVIOUS CHOICE ISTO
USE AN ARRAY OF MEMORY LOCATIONS, AND A VARIABLE WHICH POINTS TO
THE CURRENT LOCATION OF L & M_EACH TIME WE DO A JSR WE STEP UP THE
POINTER & EACH TIME WE DO AN RTS WE STEP IT DOWN.

RTS

RETURN ADDRESS ARRAY 2
3
POINTER 4

WITH ACORN WE'LL NEED TWO BYTES FOR EACH RETURN ADDRESS. THIS IS
NO TROUBLE, WE JUST INCREMENT & DECREMENT THE POINTER TWICE. THE
WHOLE PROCESS IS CARRIED OUT BY THE PROCESSOR AUTOMATICALLY ON
EACH JSR & RTS, THE POINTER IS CALLED THE STACK POINTER AND IS A
SPECIAL 8 BIT REGISTER INSIDE THE PROCESSOR. THE ARRAY IS USUALLY
CALLED A STACK SINCE IT CAN ALSO BE USED TO STORE THINGS OTHER
THAN RETURN ADDRESSES. THE ACTUAL STACK RUNS FROM @1FF DOWN TO
@100, AND IT STARTS AT THE TOP: AN EMPTY STACK HAS STACK POINTER

AT FF. ABYTE IS PUT ON THE STACK AND THE POINTER IS DECREMENTED TO
POINT AT THE NEXT LOCATION; THE POINTER IS INCREMENTED AND ABYTE
LOADED FROM THE STACK IN THE REVERSE OPERATION. NO CHECK IS MADE
FOR THE @9 TO FF DECREMENT INDICATING AN OVERFLOWED STACK, SO
PROGRAMS THAT REQUIRE MORE THAN 256 BYTES OF STACK SPACE WILL
MYSTERIOUSLY FAIL. SINCE THIS IS 128 CONSECUTIVE JSR'S, THE PROBLEM
WON'T BE ENCOUNTERED VERY OFTEN. ..

NOW THE PROCESSOR STATUS REGISTER CAN BE PUSHED ONTO THE STACK:

PLP 28 “PULL P"
PHP 08 “PUSH P"
AND SO WE MAY SAVE IT BEFORE A SUBROUTINE CALL AND RECOVER IT
AFTERWARDS
PHP
JSR.. ..
PLP
THE SEQUENCE OF STACK OPERATIONS IS
TOP
P
TO PCH TOP
[s Tor| [S KA F [s HHPrCcL] [S P [S HHT0P
PCH P
PCL PCH
/47 /;7 K?/ K?/ PCL
P] CP
PHP JSR PROGRAM OPERATES RTS PLP

SO WE HAVE NOW MANAGED TO SAVE THE CARRY FLAG, USE FE6@, AND
REGAIN THE CARRY FLAG. WE WISH TOWRITE IT OUT, SO IT WOULD HAVE

BEEN BETTER TO WRITE.
PHP
JSR FEBO
PLA

PULLBYTE FROM STACK INTO A
SINCE THIS GIVES THE CARRY FLAG IN A, AS THE LEAST SIGNIFICANT BIT,

TO GET RID OF THE REST OF THE BITS OF THE RECOVERED STATUS
REGISTER, WE CAN SIMPLY AND # 1. NOW A CONTAINS @ OR 1 DEPENDING
ON THE CARRY FROM ORIGINAL SUM. OUR PROGRAM NOW IS

SET UP FOR DECIMAL ADD

SED
CLC
LDA Z 21
ADC Z 20
PHP
JSR FE6O

PLA
AND # 01

DOIT

SAVE CARRY
WRITE OUT TWO DIGITS

ON DISPLAYS6 & 7

A=0 (NO CARRY FROM SUM)

OR A=1 (CARRY FROM SUM)

NOW ALL WE NEED TO DO ISWRITE OUT THE ACCUMULATOR ON DISPLAY
NO.5. THE WAY WE WROTE OUT THE FIRST TWO DIGITS OF THE RESULT WAS
TO USE A MONITOR SUBROUTINE WHICH DID JUST THAT. YOU'VE PROBABLY
NOTICED THAT THE MONITOR ONLY PUTS A DOT ON DISPLAY 5 (THE 3RD

ADDR

0219
09212

0214
09215
0216
0218
021A
p21C
021E
P21F
0221

0222
0223
0224
9225
0227
9229
022B
022E
w39

0232
0235
0236
0238
%239
0238
923D
?23F

0241
0243
0244
0246
0248

024A
@24C
$24D
024F
0251

#254
255
0257
P25A
925D
B25F
0260
0262
0264
0266
268
?#26B
?26C
026E
0271

0273
0275

0277

@279

927A

20
@D
20
99
QE
o0
@C

FA
oE
03
03
20
24
Fo
73
24

28

02

FE

o0

(0]
00

02

FE

LABEL

MINUS

COMMOV

WAIT

NEXTS
BLOCK

ONEOFF
BRICK

TRY

EMPTY

‘CHECK

CONT

INSTRUCTION

AND #7F
STAZX D +1
INX

INX

CPX #07

BCC SHIFTPT
LDX #00
BEQ SHIFTPT
TAY

BEQ CHEAT
TXA

LSRA

TAX

SEC

LDAZX STACK
SBC KEY
STAZX STACK
JSR DSPGAP
STY REPEAT
LDX #0p

JSR DISPLAY
DEX

BNE WAIT
DEX

STX REPEAT
LDY #03
LDX #03
LDAZX STACK

STAZX POSS
DEX

BPL BLOCK
LDX #03
LDA2X POSS

STA2X ANAL
DEX

BPL BRICK
LDX #03
LDA, Y POSS
SEC

SBC #01
STA, Y POSS
STA, Y ANAL
BCS CHECK
DEY

BPL NEXTS
LDAZX STACK
BEQ EMPTY
DECZX STACK
JMP HUMMOV
DEX

BPL TRY

JMP RESTART
LDA #04

STA COUNT
LDA #00

LSR ANAL
ROLA

LSR ANAL + 1

COMMENTS

MOVE FORWARD

END OF STACKS?

PREVENT ZERO FROM BEING USED

ADDRESS OF REQUIRED STACK

DO THE PLAYER’S MOVE

SHOW STACKS

THINKING TIME

CLEAR REPEAT STATUS

TRANSFER STACK TO POSS

POSS REPRESENTS THE POSSIBLE
COMPUTER

MOVES

TRANSFER POSS TO ANAL
ANAL REPRESENTS THE MOVE
BEING

ANALYSED

POSS CONTAINS POSSIBLE MOVE
ANAL CONTAINS POSSIBLE MOVE

TRY ALL STACKS

CHECK |IF STACK EMPTY

MAKE DESPERATE MOVE

LOST.

EVALUATE MOVE

ADDR HEX LABEL INSTRUCTION COMMENTS
CODE

@207 EQ 07 CPX #@7

@209 D@ F7 BNE LOOP — KEEP GOING

@208 85 17 STAZD+7 — NEW DATA

@20D 60 RTS.

020E

GAMES PROGRAMS

1

NIM IS ATRADITIONAL GAME INWHICH THE PLAYERS ALTERNATIVELY REMOVE
STICKS, OR COINS, OR WHATEVER FROM ONE OF SEVERAL STACKS. THE
ONLY RULES ARE THAT YOU MUST TAKE AT LEAST ONE PIECE PER MOVE
AND THAT YOU CAN ONLY REMOVE PIECES FROM ONE STACK PER MOVE.
THERE IS AWELL-DEFINED STRATEGY FOR OPTIMAL PLAY BUT THIS DOES
NOT GUARANTEE AWIN UNLESS THE OPPONENT MAKES A MISTAKE OR THE
INITIAL SITUATION IS AGAINST HIM. THE COMPUTER PLAYS WELL BUT, WITH
LUCK, CAN BE BEATEN. THE WINNER IS THE PLAYER WHO REMOVES THE
LAST PIECE

IN THIS VERSION OF THE GAME THERE ARE FOUR STACKS OF FROM 0—F
PIECES. YOU MUST ENTER THE SIZE OF YOUR STACKS IN MEMORY /
LOCATIONS 20—23 BEFORE STARTING THE GAME. THE GAME STARTS AT (M}S_‘F
AND YOUR MOVE OR 180 AND THE COMPUTER’S MOVE. ON RUNNING, THE
DISPLAY WILLSHOW A- B C DWHERE AB,C,D ARE THE CONTENTS OF
THE STACKS. ANY CONTROL KEY WILL MOVE THE POINTER (FULL STOP)
AROUND THE STACKS. WHEN IT POINTS TO THE STACK FROM WHICH YOU
WISH TO REMOVE PIECES PRESS THE KEY CORRESPONDING TO THE NUMBER
YOU WISH TO REMOVE. ZERO IS ILLEGAL AND WILL NOT BE ALLOWED. IF
YOU SUBTRACT MORE PIECES THAN ARE IN THE STACK THE GAME WILL GET
VERY CONFUSED.

AFTER REMOVAL OF PIECES THE DISPLAY WILL SHOW THE CURRENT
SITUATION AND THE COMPUTER WiLL MAKE ITS MOVE.

CONTINUE UNTIL SOMEONE (SOMETHING?) WINS.

YOU MIGHT LIKE TO TRY AND WRITE SUBROUTINES TO PRINT MESSAGES

ON THE DISPLAY IN THE EVENT OF EITHER A HUMAN OR COMPUTER
VICTORY. A CHECK WOULD HAVE TO BE INSERTED TO DECIDE A

COMPUTER WIN BUT THE JUMP FOR A HUMAN WIN IS ALREADY THERE
UNDER THE MNEMONIC JMP MESSAGE, THOUGH THE CODE IN FACT JUMPS

TO THE HUMAN MOVE.

NIM : NOT RELOCATABLE
— CLEAR DECIMAL

200 20 99 $2 HUMMOV JSR DSPGAP — DISPLAY STACKS

203 B5 11 SHIFTPT LDZXD+1 — SET DECIMAL POINT ON

0205 09 80 ORA #80

@207 95 11 STAZX D + 1

0209 20 @C FE CHEAT JSR DISPLAY — WAIT FOR INPUT

@20C 99 10 BCC MINUS

@20E B5 11 LDAZX D + 1 — REMOVE CURRENT DECIMAL POINT

FROM THE RIGHT) AND SUSPECT THAT IT CAN'T PUT ANYTHING ELSE THERE.
THIS IS TRUE, BUT IT DOESN'T MEAN THAT THERE ISN'T A MONITOR SUB-
ROUTINE THAT CAN DO THE JOB. SUCH A SUBROUTINE LIVES AT FE7A.IT IS
DESIGNED TO PUT THE LOWEST FOUR BITS OF THE ACCUMULATOR ONTO
ANY OF THE DISPLAYS, AS A READABLE CHARACTER. THIS IS JUST WHAT WE
NEED — BUT HOW DO WE TELL THE SUBROUTINE WHICH DISPLAY TO USE?

3.3 THE INTERNAL REGISTERS X ANDY.
WELL, BACK TO THE uP. THIS ISWHAT IT LOOKS LIKE INSIDE

7 BIT NUMBER

L A | AccumuLaTOR

L X | x_recister \inpex

Y—REGISTER [REGISTERS

- | Y |

PC | PrROGRAM COUNTER

| S | sTAck PoOINTER

[P | PROCESSOR STATUS

TWO NEWCOMERS, YOU'LL NOTICE! X & Y ARE 'INDEX REGISTERS’, THEY WiLL
BE DEALT WITH MORE THOROUGHLY IN A FEW MORE PAGES, BUT WHAT
MATTERS NOW IS THE USE FE7A MAKES OF THEM:
I FE7A NEITHER CARES ABOUT, NOR CHANGES X
Il FE7A DOESN'T CHANGE Y, BUT THE DISPLAY IT PUTS AONTO IS
CONTROLLED BY Y THAT IS, THE LOWER 4 BITS OF A ARE TRANSFORMED
INTO THE CORRECT SEQUENCE OF BITS TO REPRESENT THEIR HEXADECIMAL
CHARACTER AS IT SHOULD APPEAR ON THE 7 SEGMENT DISPLAY. THEN THIS
ISSTORED IN MEMORY TO AWAIT THE SUBROUTINE WHICH ACTUALLY PUTS
THINGS ON DISPLAY.
ALTHOUGH FE7A MAKES NO RESTRICTIONS ON THE SIZE OF Y, THE MONITOR
SUBROUTINE WHICH DISPLAYS THEM ONLY KNOWS ABOUT THE FIRST 8
(NUMBERED, OF COURSE, §—7) OF THEM, IN LINE WITH THE ACTUAL DISPLAY
HARDWARE. DISPLAY @ IS THE LEFTMOST, DISPLAY 7 IS THE RIGHTMOST.
TO KEEP THE MONITOR AS EFFICIENT AS POSSIBLE THE SUBROUTINE AT
FEB® USES FE7A. IT FOLLOWS THAT IT MUST HAVE LOADED Y WITH7 & 6,
AND SINCE FE7A DOESN'T CHANGE VY, Y ISSTILL SET TO THE LAST USED OF
THESE WHICH IS 6. SO. INSTEAD OF USING

LDY # @5 AD @5
WE CAN USE

DEY 88 "“DECREMENT (IN HEXADECIMAL) Y BY
ONE"”

“LOAD Y WITH THE NEXT BYTE" (@5 HERE)

TOSET Y TO 5, THUS SAVING A WHOLE BYTE! (BUT NO TIME, THE TWO
INSTRUCTIONS ARE EXECUTED IN THE SAME TIME, 2uS). THE COMPLETE
PROGRAM IS

PO2F F8 SED

o030 18 CLC

P31 A5 21 LDA Z 21

033 65 20 ADC Z20

0035 08 PHP

?@36 20 60 FE JSR FE60

@039 68 PLA

PB3A29 01 AND # 01

PO3C 88 DEY

903D 20 7A FE JSR FE7A

0040 AC 04 FF JMP FF@4

AND SO, AT LAST, WE FIND THE ANSWER TO50, ¢ + 50,0 1S

K. 002F 100

PERHAPS WE SHOULD HAVE CLEARED THE DISPLAY? OR MADE IT SHOW THE
NUMBERS TO BE ADDED TOGETHER? OR ACTUALLY FETCHED THE TWO
NUMBERS USING KEYBOARD AND DISPLAY LIKE THE MONITOR DOES? OR
SOME COMBINATION OF THESE?

3.4 MAKING OUR PROGRAM ‘FRIENDLY’

USING THE MONITOR SUBROUTINE AT FE88 IT IS EASY TO DO THE THIRD
OPTION. FE88 IS THE ROUTINE WHICH FETCHES 4 DIGIT NUMBERS,
TERMINATED BY ANY COMMAND KEY, INTO THE TWO BYTES IN ZERO PAGE
X & X+ 1 [i.e. IF X CONTAINS 20, INTO 0020 (LOWBYTE = RH PAIR OF
NUMBERS) & 0021] JUST WHAT WE NEED!

B02A F8 SED

0028 A220 LDX# 20
002D 2088 FE JSR FE 88
030 18 CLC

2031 A5 21 LDA Z 21
0933 65 20 ADCZ20
035 08 PHP

0036 2060 FE JSR FE6Q
0039 68 PLA
PO3A 29 01 AND # 1
903C 88 DEY
903D 207AFE JSR FE7A
0040 ACQ4 FF JMP FF@4

ONCE AGAIN THE PROGRAM HAS BEEN EXTENDED BACKWARDS SINCE THE
GREATER PART OF IT HAS ALREADY BEEN ENTERED (UNLESS YOU'VE
SWITCHED OFF AND LOST IT ALL)

RUNNING THIS PROGRAME (G0,0,2,A, k)PRODUCES

K. 5050 . (ONTHE ASSUMPTION THAT @020 & @021 STILL
CONTAIN THE 5¢'S ADDED TOGETHER AS BEFORE)

THE FIRST PROGRAM, TEST, IS TRIVIAL: IT JUST SENDS A PARTICULAR BYTE
TO TAPE REPETETIVELY. IT MUST BE STOPPED BY RESET. RECORD A FEW
MINUTES OF THIS, THEN LOAD IT USING LOAD. DEVIATIONS FROM THE
STATIONARY PATTERN ARE EASY TO SEE. THE SECOND PROGRAM, RETAG,
IS RELOCATABLE. IT ACTS JUST LIKE THE MONITOR'S STORE ROUTINE,
EXCEPT THAT IT ASKS FOR AN EXTRA ADDRESS. THE DATA WHICH 1S
STORED IS THAT STARTING AT THIS LAST ADDRESS, IT PRETENDS TO BE
SITUATED BETWEEN THE FIRST TWO ADDRESSES. INCORPORATE THE
REQUIRED STATE OF ZERO PAGE REGISTERS IN FRONT OF YOUR DATA,
THEN ‘LOAD AND AUTO RUN’ PROGRAMS MAY BE CREATED.

TAPE PROGRAMS NOT RELOCATABLE

ADDR HEX LABEL INSTRUCTION COMMENTS
CODE

0200 A9 55 TEST LDA #55 —~ THE TEST BYTE

9202 20 B1 FE JSR PUTBYTE — SENDIT

9205 4C 09 @2 JMP TEST — KEEP SENDING IT

0208 A9 F1 RETAG LDA #F1 — F.PROMPT

920A 85 19 STAD

020C A2 06 LDX #06

@20E 20 88 FE JSR QDATFET — FIRST ADDRESS

@211 A2 @8 LDX #08

0213 86 10 STX D — PROMPT

9215 20 88 FE JSR QDATFET — SECOND ADDRESS

9218 A9 46 LDA #46 - PROMPT

@21A 85 19 STAD

@21C A2 29 LDX #20

@21E 20 88 FE JSR QDATFE? — LAST ADDRESS: ACTUAL DATA
START

9221 A2 94 LDX #04

¢223 B5 @5 ADRSS LDA Z,X 05 — SEND FAKE ADDRESSES

225 20 B1 FE JSR PUTBYTE

9228 CA DEX

$220 DO F8 BNE ADDRSS

0228 AD 00 DATAS LDY #00

@220 B1 20 LDA (20),Y — PROPER DATA

@22F E6 20 INC 20 — INCREMENT PROPER DATA
COUNTER

@231 DO @2 BNE NOINC

9233 E6 21 INC 21

9235 20 B1 FE NOIINC JSR PUTBYTE — SEND DATA

@238 20 AQ FE JSR COM16 — CHECK FAKE ADDRESSES FOR END

9238 D@ EE BNE DATAS

@230 4C @4 FF JMP RESTART

0240

THE SCROLL PROGRAM SHIFTS THE WHOLE DISPLAY ONE LEFT, AND
ENTERS THE NEW INFORMATION, IN A, ON THE FAR RIGHT.
SCROLL

ADDR HEX LABEL INSTRUCTION COMMENTS

CODE
0200 A2 0 LDX #00 — MUST GO FORWARDS
0202 B4 11 LOOP LDY 2X D +1 — PICK-UP DATA ON RIGHT
¢204 94 19 STY 2X D — & MOVE IT ONE LEFT

0206 E8 INX

@25A 00 71 77
925D 50 09
p25F

THE RELOCATOR FIRST FETCHES THE THREE ADDRESSES IT REQUIRES, THE
ADDRESSES OF THE START & END OF THE MEMORY SECTION TO BE MOVED,
AND THE ADDRESS OF THE START OF THE AREA TO WHICH THE MOVE ISTO
TAKE PLACE. THE PROMPTS ARE F., & t RESPECTIVELY.AFTER
TERMINATING THE LAST ADDRESS, THE MOVE TAKES PLACE. MOVES UP BY
LESS THAN THE LENGTH OF THE MATERIAL TO BE USED WILL NOT BE

SUCCESSFUL (I.E. t— F ., IF POSITIVE,SHOULD BE GREATER THAN —t)

RELOCATOR

ADDR HEX LABEL INSTRUCTION COMMENTS

CODE

@op A2 F1 LDX #F1

9202 86 10 STXZD — SET UP FROM PROMPT F.

0204 A2 20 LDX #20

@206 20 88 FE JSR QDATFET — AND GET ADDRESS

0209 A2 46 LDX #46

0208 86 19 STXZD — SET UP END PROMPT

920D A2 22 LDX #22

@20F 20 88 FE JSR QDATFET — AND GET SECOND ADDRESS —
MOVE THE DATA BETWEEN THESE
ADDRESSES

9212 A2 78 LDX #78

@214 86 10 STXZD — SET UP TO PROMPT

9216 A2 24 LDX #24

9218 20 88 FE JSR QDATFET — AND GET BASE ADDRESS — MOVE
TO HERE & SUCCESSIVE
LOCATIONS

@218 A2 1A LDX #1A

@210 Al 96 MOVE LDA (#6,X) — DO THE MOVE

@21F 91 24 STA (24,Y)

9221 c8 INY — INCREMENT THE TO ADDRESS

9222 DO 02 BNE NOINC

9224 E6 25 INCZ 25

0226 20 A@ FE NOINC JSR COM16 — USE COM16 TO DO THE LIMIT TEST

9229 DO F2 BNE MOVE

@22B 4C @4 FF JMP RESTART

0220

YOU SHOULD ENTER THE TWO PAIRS OF NUMBERS YOU WISH ADDED
TOGETHER AS IF THEY FORMED AN ADDRESS. TERMINATING YOUR ENTRY
WITH k INSTANTLY PRODUCES THE RESULT

K. 5050 100

LOOKING BACK OVER THE PROGRAM, AND EXAMINING THE MONITOR
LISTING,WILLREVEAL THAT IT TOOK AD, ¢ (OR 173,,) BYTES OF CODE TO
ACHIEVE THIS. THE ACTUAL OPERATION USED 6 BYTES OF CODE (SED; CLC;
LDA Z; ADC Z) WHILE THE OTHER 167, o ARE THERE ‘MERELY’ TO DISPLAY
THE RESULT & FETCH THE INFORMATION NEATLY (THE CODE CALCULATIONS
DO NOT CONS!DER THE 16,4 BYTES OF CHARACTER FONT OR THE 11,
BYTES OF TEMPORARY STORAGE ALSO USED)

CHAPTER 4: THE REMAINDER OF THE INSTRUCTION SET
4.1 BRANCHES
THINKING ABOUT THE FE88 PROGRAM, YOU SHOULD REALIZE THAT IT DOES
SOMETHING OF THE FORM
FETCH NEXT KEY
IF KEY IS A COMMAND KEY THEN RETURN

THIS IS A CONDITIONAL TRANSFER OF CONTROL AND REPRESENTS SOME
NEW INSTRUCTIONS AND A DIFFERENT WAY OF CHANGING THE PROGRAM
COUNTER. AN OPERATION LIKE ADC DOES MORE THAN ADDING TWO BYTES
AND THE CARRY FLAG TOGETHER AND OUTPUTTING A CARRY.IT ALSO SET!
SOME OF THE OTHER FLAGS IN P:

THE ZFLAG ISSET IF THE RESULTING BYTE WAS ZERO

THE V FLAG ISSET IF THERE WAS A 2'S COMPLEMENT OVERFLOW

THE N FLAG ISSET IF THE RESULT WAS A NEGATIVE 2'S COMPLEMENT

NUMBER — |.E. BECOMES BIT 7 OF THE RESULT.
THESE FLAGS ARE ABLE TO CAUSE CONDITIONAL TRANSFER BY USING
THE APPROPRIATE ONE OF THE EIGHT ‘BRANCH’ INSTRUCTIONS. THE
MECHANISM EMPLOYED IS TO PERFORM A 2'S COMPLEMENT ADD BETWEEN
THE PROGRAM COUNTER AND THE SECOND BYTE OF THE BRANCH
INSTRUCTION THUS PERMITTING THE TRANSFER TO BE —128...+127 BYTES
FROM THE NEXT INSTRUCTION. THIS IS CALLED '‘RELATIVE ADDRESSING’
AND IS A POSITION INDEPENDENT METHOD OF TRANSFER, THE EIGHT
BRANCH INSTRUCTIONS ARE ASSOCIATED TWO TO EACHOF THEC, 2,V &
N FLAGS, ONE OF WHICH BRANCHES IF THE FLAG IS SET, THE OTHER
BRANCHES IF IT IS CLEAR.

TO CLARIFY THIS LET'S LOOK AT AN EXAMPLE:

* 40 BCS 03 “BRANCH IF CARRY SET"
* 40 SEC SET CARRY

*+3 CS M

* 45 EJSLC CLEAR CARRY

46 L.

(THE ARROWS ARE PUT IN FOR CLARITY)

WE’'LL NEED TO CONSIDER THIS PROGRAM BOTH WITH THE CARRY SET &
WITH IT CLEAR

| CARRY ISCLEAR

INSTRUCTION | DOES NOT TRANSFER CONTROL SO WE DO INSTRUCTION I1,
SEC,NOW INSTRUCTION 111 TRANSFERS CONTROL SINCE THE CARRY IS NOW
SET. @1 1S ADDED TO THE PC (= * +5) TO GIVE* + 6 AS THE ADDRESS OF THE
NEXT INSTRUCTION.

{I CARRY ISSET
INSTRUCTION | TRANSFERS CONTROL. @3 IS ADDED TO THEPC (= * +2) TO
GIVE * +5 AS THE ADDRESS OF THE NEXT INSTRUCTION, INSTRUCTION 1V,
CLC.

SO IF THE CARRY WAS CLEAR IT IS SET; IF ITWAS SET IT IS CLEARED, SO THE

PROGRAM COMPLEMENTS THE CARRY (THERE ARE QUICKER METHODS,

INDEED IT CAN BE DONE WITH 3 INSTRUCTIONS IN 4 BYTES):

AND WE CAN GO BACKWARDS:

*+0 BCS @3V] BRANCH IF CARRY SET
*42 SEC SET CARRY

*+3 BCS FB BRANCH IF CARRY SET
*+5 cLC — CLEAR CARRY

* + 6

|E THE CARRY IS SET THE PROGRAM IS AS BEFORE IF IT IS CLEARED WE SET IT
& BRANCH FB

2's COMPLEMENT ADD *+5
—_fFB +
|
—BACK TO THE BEGINNING. A RATHER COMPLICATED WAY OF CLEARING

THE CARRY.

MOST OF THE NON-BRANCH INSTRUCTIONS WILL CHANGE SOME OF THESE 4
TESTABLE FLAGS, USUALLY THE N & Z FLAGS SINCE THEY CONSTANTLY
MONITOR THE STATUS OF OPERANDS SO BRANCHES WILL APPEAR RATHER
FREQUENTLY IN PROGRAMS.

4.2 INDEXING

IF YOU WISHED TO CLEAR (SET EACH BYTE TO 0) A PATCH OF MEMORY, e.g.
THE MEMORY USED TO STORE THE DATA WHICH IS TO BE OUTPUT TO THE
DISPLAYS,WHICH IS FROM @@1¢ TO 8817, YOU MIGHT THINK

LDA# 00 LOAD ACCUMULATOR IMMEDIATE WITH 00
STAZ10 STORE ACCUMULATOR IN ADDRESS 001@
STAZ 11 STORE ACCUMULATOR IN ADDRESS 0811
STAZ12 STORE ACCUMULATOR IN ADDRESS 9@12
STA Z17 STORE ACCUMULATOR IN ADDRESS 0017

IS NECESSARY. THIS LOOKS SUFFICIENTLY REGULAR THAT THE COMPUTER
SHOULD BE ABLE TO DOT IT. THIS ISWHERE THE INDEX REGISTERS
REAPPEAR. WE CAN STORE THE ACCUMULATOR INDEXED BY EITHER INDEX
REGISTER

STA Z,X 95 "STORE A INDEXED BY X IN ZERO
PAGE"”

STAZX 10

THE OFFSET CALCULATOR CALCULATES THE OFFSET TO BE ENTERED AS
THE SECOND BYTE OF A BRANCH INSTRUCTION. IT WILL PROMPT WITH
XX@@0XX AND YOU SHOULD ENTER THE ADDRESS OF THE BRANCH
INSTRUCTION. AFTER A CONTROL KEY IT WiLL PROMPT AGAIN WITH
XX1111XX AND YOU SHOULD ENTER THE ADDRESS YOU WISH TO BRANCH
TO. THE REPLY WILL BE EITHER “OFFSET XX" WHERE XX IS THE VALUE TO
BE ENTERED, OR “TOO FAR’' |F THAT IS THE CASE. A CONTROL KEY

RESTARTS THE SEQUENCE.

OFFSET CALCULATOR

ADDR

0200
@2m

0203
0205
0207
0209
@208
020E
0219
0212
@214
9216
0219

@218
@21D
@21F
0221

9223
0224
0226
0228
0229
0228
22D
022F
9231

9232
9235

9236

9239
#23C
923E

0241

0244
0246
0248
924A
924D
024E
9250
0251

0254
9257

HEX

COoD
D8

A9
85
84
84
A2

E

LABEL

AGAIN

FE

FE

HSUB

02

FE

FF
TOOFAR

02

02
MESSAGE

LOOP
20

71

5C

INSTRUCTION

CLD
LDA #02

STA MESSH
STY FROMH
STY FROML
LDX #FROML
JSR QDATFET
LDA #11
STATOL

STA TOH

LDX #TOL
JSR QDATFET
LDA FROML

SBC #7E
STA FROML
BCS HSUB
DEC FROMH
SEC

LDA TOL
SBC FROML
TAX

LDA TOH
SBC FROMH
BNE TOOFAR
LDA #51

JSR MESSAGE
TXA

EOR #80

JSR RDHEXTD

JMP RESTART
LDA #6567
JSR MESSAGE

JMP AGAIN
STA MESSL
LDY #07

LDA (MESSL), Y
STAD, Y

DEY

BPL LOOP

RTS

NOT RELOCATABLE

COMMENTS

INITIALIZE MESSAGE POINTER
SET UP PROMPT

FETCH FIRST ADDRESS
SET UP 2ND PROMPT

FETCH SECOND ADDRESS
OFFSET TO MAKE OVERLENGTH
EASY

CARRY KNOWN SET BY QDATFET

DON'T SET THE CARRY AGAIN!

CALCULATE THE LENGTH

PRINT OUT

COMPLEMENT TOP BIT BECAUSE OF
THE OFFSET APPLIED

PRINT OUT ANSWER, OVER
WRITING THE

FINISHED

WHOOPS

TELL THE PROGRAMMER THAT IT'S
WRONG

AND GET IT DONE AGAIN

MESSAGE DESCRIBED BY A

EIGHT BYTES OF DATA TO DISPLAY
FETCH THEM

THE DATA

THE HEXADECIMAL TO DECIMAL CONVERTER PROMPTS WITH XX@@@@XX
AND AFTER A CONTROL KEY IS PRESSED WILL PROVIDE AN ANSWER IN THE

THE PROGRAM WORKS BY DECREMENTING THE HEX. NUMBER AND
INCREMENTING THE DECIMAL NUMBER UNTIL THE HEX. NUMBER REACHES
ZERO.

THIS PROGRAM, LIKE THE DECIMAL TO HEX. CONVERTER, WHICH USES
VIRTUALLY THE SAME METHOD, ILLUSTRATES THE USE OF THE

DECIMAL MODE, AN IMPORTANT FACET OF THIS PROCESSOR.

THEY ALSO PROVIDE AN EXCELLENT DEMONSTRATION OF THE TRADEOFF
FREQUENTLY FOUND BETWEEN PROGRAM LENGTH AND SIMPLICITY, AND

PROGRAM EXECUTION TIME. THE METHOD USED IS BOTH SHORT AND SIMPLE,

BUT CAN TAKE UP TO THREE SECONDS FOR SOME CALCULATIONS. A MUCH
LONGER AND MORE COMPLEX (RELATIVELY) PROGRAM COULD HAVE BEEN
WRITTEN BASED ON ABCD = A(16+16+16)+B(16+16)+C(16)+D AND WOULD HAVE
BEEN VIRTUALLY INSTANTANEOUS.

HEX ~ DEC
ADDR HEX LABEL INSTRUCTION COMMENTS
CODE
@200 84 20 STY Z HEXL — SET UP ZERO PROMPT
0202 84 21 STY Z HEXH -
0204 A2 20 LDX #HEXL
0206 2¢ 88 FE JSR Q DATFET — AND FETCH THE DATA
@209 F8 SED — DECIMAL MODE
020A A2 00 LDX #09 — SET X & Y & DECOUT TO ZERO
@20C 86 22 STX Z DECOUT
P20E AL 20 DECRHEX LDA Z HEXL — TESTFORZERO,THENDECREMENT
0210 D@ @6 BNE NODEL
9212 A5 21 LDA Z HEXH
0214 Fp 13 BEQ DEAD — IFHEXNO.IS ZERO, THEN FINISHED
@216 C6 21 DEC Z HEXH
@218 Cc6 20 NODEC DEC Z HEXL
®21A 18 cLC A
@218 98 TYA
921C 69 @1 ADC #¢1
021E A8 TAY
P21F 8A TXA L ADD 1 TO THE DECIMAL NUMBER,
0220 69 00 ADC #09 USING X & Y AS TWO BYTE
0222 AA TAX ACCUMULATOR
@223 99 E9 BCC DECRHEX
9225 E6 22 INC Z DECOUT
@227 B® E5 BCS DECRHEX /
9220 84 290 DEAD STY Z HEXL — FINISHED,SO STORE X & ¥
9228 86 21 STX Z HEXH
9220 A2 20 LDX #HEXL
022F 20 64 FE JSR QHEXTD1 — DISPLAY 4 DIGITS
¢232 88 DEY
0233 A5 22 LDA Z DECOUT
0235 20 7A FE JSR HEXTD — DISPLAY 5 DIGIT
@238 4C @4 FF JMP RESTART
923A

STA £X10 GoOF

— (0010
@011
3912
0013
9015
2016
0017

A ISSTORED IN 17 WHICH IS 10 THE “"BASE ADDRESS" +@7 THE “INDEX"

IF WE DO
A2 07 LDX # @7
9510 STAZX 10
THE STORE IS TO LOCATION 17 (=10 + X). THE ADDITION IS STRAIGHT-
FORWARD BINARY, TRUNCATED TO A LOCATION IN ZERO PAGE SO
LDX# FF
STAZX 10
STORES IN LOCATION @F
WE ALSO HAVE
STA, X 9D “STORE A INDEXED BY X"
STA,Y 99 "“STORE A INDEXED BY Y”
(BUT NO STAZ,Y) WHICHDO NOT NEED TO TRUNCATE THE ADDITION
THEY EXPECT A TWO BYTE ADDRESS SO

LDX # FF
STA, X 0010
STORES IN LOCATION @10F
NOW
DEX CA "DECREMENT (IN HEX) X BY ONE"
SETS THE Z FLAG IF X IS ZERO, & THE N FLAG EQUAL TOBIT 7 OF X.
BPL 10 “BRANCH IF PLUS"

TAKES THE BRANCH IF THE N FLAG IS CLEAR L.E. IS SAYING ‘NOT NEGATIVE’
[.E. PLUS. IT'S EASY TO SEE THAT THE COMBINATION

DEX

BPL_FD |
DECREMENTS X ONCE AND, |F THE RESULT WAS POSITIVE (I.E. IN THE
RANGE @ — 7F) IT TAKES THE BRANCH AND DECREMENTS X AGAIN. ... AND
AGAIN UNTIL IT REACHES A NON-POSITIVE NUMBER, WHICHWILL BE FF,
WHEN IT DOESN'T TAKE THE BRANCH. IF WE START AT 7 AND EACH TIME
AROUND THE LOOP CLEAR THE RELEVANT DISPLAY:

CODE LABEL MNEMONICS COMMENT

A9 00 LDA # 00 LOAD ACCUMULATOR IMMEDIATE

A2 Q7 LDX #@7 LOAD X IMMEDIATE

9510 LOOP:STA Z, X 10 STORE‘% IN ZERO PAGE INDEXED
BY X

CA DEX DECREMENT X BY ONE

10 FB BPL LOOP BRANCH IF PLUS TO "LOOP"

SO WE CANWRITE A VERY SHORT PROGRAM TO CLEAR THE DISPLAY. BY
MAKING THE LOOP SLIGHTLY LARGER (WITH THE SAME LENGTH OF
PROGRAM)

PP60 A2 @7 LDX #@7
062 B5 48 LOOP:LDA Z, X 48
P64 95 10 STAZ,X10
P66 CA DEX

0067 10 F9 BPL LOOP
(069 4C 04 FF JMP FF@4

WE CAN, INSTEAD OF CLEARING THE DISPLAY, CAUSE A BLOCK OF MEMORY,
0048 — @P4F, TO BE TRANSFERRED TO THE DISPLAY. THE PROGRAM IS
POSITION INDEPENDENT SO YOU CAN WRITE IT INTO MEMORY ANYWHERE. . .
EXCEPT LOCATIONS @010 — @317. IF YOU PUT THE PROGRAM IN@@48 1T
WILL FUNCTION PERFECTLY BUT YOU WON'T BE ABLE TO CHANGE THE DATA
WHICH IS MOVED, SINCE THIS IS THE PROGRAM. YOU CAN TRY THE PROGRAM
USING THIS DATA

P48 Bp 77 58 5C 50 54 60 0O

OR YOU COULD CONSTRUCT YOUR OWN DATA, USING APPENDIX A.

THE INDEXING MECHANISM SHOWN ABOVE IS ONLY CAPABLE OF DEALING
WITH 256 (CONSECUTIVE) BYTES, STARTING AT A GIVEN ADDRESS. THUS

A9 00 LDA # 00 LOAD A IMMEDIATE WITH @@
A8 TAY TRANSFERATO Y

18 LOOP:CLC CLEAR CARRY

79 00 FE ADC, Y FEQO® ADD WITH CARRY INDEXED BY Y
C8 INY INCREMENT Y

D@ F9 BNE LOOP BRANCH IF NOT EQUAL

20 60 FE JSR FE60 JUMP SUBROUTINE

4C 04 FF JMP FF@4 JUMP

COMPUTES THE LOWEST BYTE OF THE 256 BYTE ADDITION. (NOTE THAT,
SINCE Y IS ZERO WHEN YOU LEAVE THE MONITOR BY THE GO FUNCTION,
THE INITIALISATION OF A & Y CAN BE ACCOMPLISHED BY TYA INSTEAD OF
LDA #00, TAY) HOW COULD THIS BE DONE FOR ALL 65536 MEMORY BYTES?
CLEARLY IT IS POSSIBLE TO HAVE AN ADC, Y FOR EACH PAGE:

98 TYA

18 LOOP: CLC

79 00 00 ADC, Y 0000

18 CLC CLC
79 09 FF ADC, Y 0100 256 ADC, Y INSTRUCTION PAIRS
18 CcLC

79 @@ FF ADC, Y FFOQ

C8 INY

Fo 03 BEQ END

4Cc?? JMP LOOP

20 60 FE END JSR FE6Q

AC Q4 FF JMP FF@4

IN ORDER TO SHORTEN THIS PROGRAM WE WILL INTRODUCE THE CONCEPT
OF “INDIRECTION"".

ADDR HEX LABEL INSTRUCTION COMMENTS

CODE
0240 A2 24 LDX #24 — SET UP X
@242 20 66 FE JSR QHEXTD2 — PUTNEXT40UT
0245 4C 04 FF JMP RESTART — DISPLAY RESULT
0247
SYSTEM

THE DECIMAL TO HEX CONVERTER WILL PROMPT WITH @XXXX FOR THE
FIRST DIGIT OF THE 5 DIGIT DECIMAL NUMBER. THEN X@@@@. FOR THE LAST
FOUR DIGITS OF THE DECIMAL NUMBER. CLEARLY ANYTHING OVER 65535
WILL GIVE THE REMAINDER WHEN DIVIDED BY 10000 HEX. TO ENTER THIS
NUMBER YOU WOULD KEY 6, CONTROL KEY, 5535, CONTROL KEY, AND FFFF
WILL APPEAR ON THE DISPLAY (AFTER A SLIGHT DELAY!)

THE PROGRAM WORKS BY A PROCESS OF DECREMENTING THE DECIMAL
NUMBER AND THEN INCREMENTING THE HEX. NUMBER.

DEC—-HEX

0200 98 TYA — CLEARA

0201 85 20 STA Z DECL — CLEARNO

0203 85 21 STA Z DECH

0205 A2 20 LDX #DECC

@207 85 22 AGAIN STA 2 DECVH

9209 20 7A FE JSR HEXTD — FETCH THE FIRST DIGIT

@20C 20 OC FE JSR DISPLAY

@20F 99 F6 BCC AGAIN

0211 20 88 FE JSR QDATFET — AND THEN THE LAST FOUR DIGITS

©214 F8 SED — DECIMAL MODE

0216 84 10 STYZD — CLEAR LEFT DISPLAY

@217 A6 21 LDX Z DECH — X & Y AS DOUBLE ACCUMULATOR

9219 98 TYA

021A 85 21 STA Z DECH — CLEAR AREA FOR RESULT

921C A4 20 LDY Z DECL

921E 85 20 STA Z DECL

0220 38 NEXT SEC

0221 98 ALSO TYA

0222 E9 o1 SBC #01 — DO A DECIMAL SUBTRACT, DOUBLE
BYTE

0224 A8 TAY

9225 8A TXA

9226 E9 00 SBC #00

0228 AA TAX

9229 BO 04 BCS NODEC

0228 Cc6 22 DEC Z DECVH — LAST OF THE DECIMAL SUBTRACT,
TO DO 5 DIGITS

922D 3p @9 BMI RESULT — IF MINUS THEN FINISHED

@22F E6 20 NODEC INC 2 DECL — DOUBLE HEX INCREMENT

0231 D® ED BNENEXT

0233 E6 21 INC Z DECH

9235 38 SEC — CREATE BRANCH ALWAYS, BUT

0236 B® E9 BCS ALSO DON'T BOTHER TO SET THE CARRY
TWICE

0238 A2 20 RESULT LDX #20

P23A 20 64 FE JSR QHEXTD — DISPLAY RESULT

923D 4C 04 FF JMP RESTART
023F

ADDR

0208
020A
020D
020E
0210

0212
0214
0215

0217
0218
9219
0213
021D
021F
0222
0224

DOUBLE BYTE MULTIPLY

ADDR

0200
0201

0203
0205
0207
0209
@208
920D
0210
09212
@215
0277

0219
9218
021D
021F
9221

0222
0224
0226
0228
022A
@922C
022
6230
0232
0233
9235
9237
@239
023B

@23E

HEX LABEL
CODE

A2
20
98
AD
66

90
18
65

6A
88
Do
85
66
20
20

20
88 FE

08
20 LOOP

23
21
NAD
F5
21
20

64 FE
64 FF

HEX LABEL

23 LOOP

25 NAD

66 FE

INSTRUCTION

LDX #20

JSR QDATFET
TYA

LDY #08
ROR Z 20

BCCNAD
CcLC
ADC Z 21

ROR A

DEY

BNE LOOP
STAZ21

ROR 2 20

JSR QHEXTD
JMP RESTART

INSTRUCTION

CLD

STY 220 MPIER

STYZ 21
LDA #11

STA 222 MPICAND

STAZ23
LDX #20

JSR QDATFET
LDX #22

JSR QDATFET
STY 224

STY Z25

LDY #10

ROR Z 23
ROR 222

BCC NAD

cLC

LDA Z 20

ADC Z 24
STAZ 24

LDA 221

ADC Z 25
STAZ 25

ROR Z 25
ROR Z 24
DEY

BNE LOOP
ROR Z 23
ROR Z 22

LDY #06

JSR QHEXTD2

LDY #02

COMMENTS

FETCH THE NUMBERS

CLEARS A

LOOP COUNTER

SHIFT MULIPLIER (AND HIGH BYTE
OF RESULT)

NO ADD IF NO BIT

ADD MULTIPLICAND INTO LOW
BYTE OF RESULT
AND SHIFT LOW BYTE OF RESULT

PUT IN LOWBYTE
FINAL JUSTIFICATION SHIFT
DISPLAY ANSWER

COMMENTS

BINARY ONLY
FORM PROMPT FOR THE ZERO
INPUT

FORM PROMPT FOR THE FIRST
INPUT

FETCH ZERO INPUT

AND FIRST INPUT
CLEAR WORKING SPACE

LOOP COUNT INITIALISATION
TWO BYTE SHIFT RIGHT

NO ADD IF THE O/P BIT ISN'T A ONE

TWO BYTE ADD

NO CARRY OUT OF THE ADD
SHIFT AGAIN

GO ROUND LOOP 16 TIMES
FINAL SHIFT ON RESULT

SET UP POSITION

X ALREADY POINTING AT
CORRECT LOCATIONS — PUT 4 HEX
ouT

NEXT POSITION

4.3.INDIRECTION:

YOU’'LL NOTICE THAT THE PROGRAM IS NOT POSITION INDEPENDENT: THE
ADDRESS OF THE CLC INSTRUCTION MUST BE WRITTEN INTO THE PROGRAM.
THIS IS ANOTHER DISADVANTAGE OF THIS METHOD: (THERE IS AN
ADVANTAGE: THIS PROGRAM IS VERY FAST, TAKING ONLY 6uS PER BYTE).
THE INSTRUCTION REQUIRED MUST HAVE A 16 BIT UNFIXED ADDRESS AND
THIS CAN ONLY GO IN ONE PLACE : MEMORY. A LIMITATION IS THAT
GENERALLY IT CANONLY BE IN ZERO PAGE MEMORY. THE CONCEPT IS
KNOWN AS INDIRECTION. THE MOST DIRECT VERSION OF THIS IS THE
INDIRECT JUMP.

6C 0200 JMP (0002)

THIS IS THE ONE VERSION OF INDIRECTION THAT DOESN‘'T NEED TO REFER
TO ZERO PAGE MEMORY. WHAT HAPPENS IS THIS:

TIME,uS ADDRESSBUS DATABUS R/W

1) PC 6C 1 JUMP INDIRECT

1 PC+1 02 1

2 PC+2 0] 1

3 0002 \% 1 LOWER BYTE

4 003 U 1 HIGHER BYTE

5 uv OPCODE 1 OLD 6C COMPLETED

- THE MONITOR USES A JUMP INDIRECT FOR THE GO FUNCTION, HAVING

BUILT THE ADDRESS IN $¢32 & 0003 : A JUMP INDIRECT VIA 0002 & 0003,
ASSUMING THAT THESE LOCATIONS HAVEN'T BEEN ALTERED, WILL THUS
RETURN TO THE START OF THE PROGRAM — WITHOUT KNOWING WHERE
IT HAD BEEN ENTERED INTO MEMORY AT THE TIME OF WRITING.
INDIRECT JUMP

MAIN PROGRAM { ZERO PAGE

JMP (0002) :
12 ooo2
34 : 0003
4
ROUTINE
XX 1234
XX 1235

XX 1236
WELL, THAT WAS SIMPLE INDIRECTION. NOW WE’LL MOVE ONTO THE MORE
COMPLICATED MODES OF INDIRECTION. HAVING FETCHED THE ADDRESS
OUT OF MEMORY WITH THE INDIRECTION STAGE, WE CAN INDEX IT. THIS IS
CALLED POST-INDEXED INDIRECTION, WITH THE 65XX SERIES OF MICRO-
PROCESSORS YOU MAY ONLY

| INDEX IN THIS MODE WITH THE Y INDEX REGISTER

[l USE ZERO PAGE MEMORY

TIME,uS ADDRESS BUS DATABUS R/W

1) PC B1 1 LDA ()Y

1 PCH+1 I 1

2 1,11)4 J 1

3 BT+ K 1

4 KJ+Y DATA 1 (AN EXTRA uS IS NEEDED IF J+Y
5 PC+2 OPCODE 1 RESULTS IN A CARRY)

THIS 1S THE MODE OF ADDRESSING NEEDED TO SOLVE THE 65536 BYTE
ADDITION PROBLEM. MEANWHILE WHAT ABOUT THE X REGISTER AND
INDIRECTION? HERE WE HAVE PRE-INDEXED INDIRECTION

TIME,uS ADDRESSBUS DATABUS R/W

(0] PC A1l 1 LDA (LX)
1 PC+1 1 1
2 eaI DATA, 1
DISCARDED
3 P0I+X J 1 NO CARRY TO HIGH ORDER BYTE
4 O@I+X+1 K 1
5 KJ DATA 1 PUTINA
6 PC+2 OPCODE 1

THIS IS THE OPPOSITE TO POST-INDEXED ... HERE THE INDEXING SWITCHES
BETWEEN DIFFERENT INDIRECTION LOCATIONS. THE EFFECTS OF THESE
TWO INDEXING MODES ARE ONLY THE SAME IN THE TRIVIAL CASE OF ZERO
INDEXES. HERE IS THE SOLUTION TO THE 65536 BYTE ADDITION:

98 TYA —ZEROY & A
85 20 STA Z 20

85 21 STA Z 21 SET UP INDIRECT LOCATIONS
18 LOOP CLC

7120 ADC (20), Y

Cc8 INY

D@ FA BNE LOOP

E6 21 INC Z 21

D@ F6 BNE LOOP

2060 FE JSR FE6B0Q

4C @4 FF JMP FF@4

THE PROGRAM [S, ONCE AGAIN, POSITION INDEPENDENT. IT IS, AS IMPLIED IN
THE FIRST SOLUTION, SLOW : 12uS PER BYTE. THIS IS MAINLY DUE TO THE
SMALL SIZE OF THE LOOP : THE 3uS ‘NEARLY ALWAYS TAKEN' BRANCH IS
TAKING A DISPROPORTIONATE AMOUNT OF TIME, IN THE FIRST SOLUTION
THE EQUIVALENT 5uS BRANCH AND JUMP COMBINATION OCCURS ONLY
EVERY 256 BYTES AND IS THUS IGNORED IN THE TIME CALCULATIONS.

THE INSTRUCTION INC Z 21 HAS AN OBVIOUS FUNCTION : INCREMENT (IN
HEXADECIMAL) LOCATION @@21. IT ACTS JUST LIKE INX OR INY —BUT IT
TAKES 5uS INSTEAD OF 2uS.

4.4 READ-MODIFY WRITE INSTRUCTIONS

THERE ARE COMPANION INSTRUCTIONS TO INC 2 THAT CAN DIRECTLY

ALTER MEMORY CONTENTS, THESE ARE CALLED READ-MODIFY-WRITE

INSTRUCTIONS, THE NEXT OF WHICH IS THE OBVIOUS DEC INSTRUCTION,

~

ADDR HEX LABEL INSTRUCTION COMMENTS
CODE
9217 A4 20 LDY 220 — USE Y & X AS DOUBLE
ACCUMULATOR
@219 A6 21 LDX 2 21
9218 38 SUB SEC
@21C 98 TYA
921D E5 22 SBC Z 22 — SUBTRACT THE DIVISOR
021F A8 TAY
0220 8A TXA
0221 €9 00 SBC #0p
0223 AA TAX
0224 20 10 BCC RESULT — IF NEGATIVE THEN FINISHED
0226 84 23 STY 223 — ELSE UPDATE THE REMAINDER
9228 A5 24 LDA Z 24
022A 69 P ADC #00
922C 85 24 STA Z24 — AND ADD ONE TO THE RESULT
@22E A5 25 LDA Z 25 (CARRY WAS SET ON INPUT).
023¢ 69 00 ADC #00
@232 85 25 STAZ 25
9234 99 E£5 BCC SUB — NO CARRY IS POSSIBLE (USUALLY)
0236 A2 24 RESULT LDX#24
0238 20 64 FE JSR QHEXTDI — DISPLAY RESULT
023B A5 23 LDA Z 23
®23D 20 60 FE JSR RDHEXTD — AND REMAINDER

0249 4C @04 FF
9242

JMP RESTART

THE TWO MULTIPLY ROUTINES ARE FOR SINGLE AND DOUBLE BYTE BINARY
MULTIPLICATION. THE FIRST PROMPTS XX@@11XX AND THE TWO NUMBERS
TO BE MULTIPLIED SHOULD BE ENTERED SEQUENTIALLY. (E.G. 1234 WOULD
GIVE 12 X 34). THE SECOND PROMPTS XX@@@@XX FOLLOWED BY XX1111XX
FOR THE TWO NUMBERS. ANSWERS ARE, AS USUAL, DISPLAYED AFTER A
CONTROL KEY HAS BEEN PRESSED.

BOTH ARE BASED ON AN EQUIVALENT TO THE NORMAL METHOD OF LONG
MULTIPLICATION.

EG. 11010
00110
GO00000008 — (@ X 2*) X 11010
000000000 — (BX 2%) X 11010
1101006 — (1 X 2%) X 11010
1M¢1080 - (1X2) X 11010
000000 —(@X 2°) X 11010
10011106
SINGLE BYTE MULTIPLY
ADDR HEX LABEL INSTRUCTION COMMENTS
CODE
0200 D8 CLD
0202 84 20 STY 220 — SET UP PROMPT FOR ZERO —
MULT!PLIER
0204 A9 11 LDA #11
0206 85 21 STAZ21 — PROMPT FOR FIRST — MULTIPLICAND

ADDR HEX LABEL INSTRUCTION COMMENTS
CODE

@20F 84 23 STY ZSUBL — SUBTRACT 0001 AT START

9211 Ad 20 LDY 2 SaL — USE Y & X AS DOUBLE SIZED
ACCUMULATOR

0213 A6 21 LDX Z SQH

0215 38 NXTSUB SEC

0216 98 TYA

0217 E5 23 SBC Z SUBL

0219 A8 TAY — SUBTRACTSUBFROM X &Y

?P21A 8A TXA

9218 E5 24 SBC Z SUBH

921D AA TAX

021E 90 14 BCC RESULT — IF NEGATIVE THEN STOP

9220 A9 00 LDA# 0D — NOT FINISHED YET. INCREMENT
ROOT

9222 65 22 ADC Z ROOT

0224 85 22 STA Z ROOT

0226 A5 23 LDA Z2SUBL — INCREMENT SUB

0228 69 02 ADC #02

922A 85 23 STA ZSUBL

@22C A5 24 LDA Z SUBH

922E 69 00 ADC #00

0230 85 24 STA Z SUBH

0232 99 E1 BCC NXTSUB — THERE CAN BE NO CARRY:

BRANCH ALWAYS
0234 A5 22 RESULT LDA Z ROOT
9236 20 60 FE JSR DHEXTD
0239 AC @4 FF JMP RESTART
9248

DISPLAY ANSWER

THE DiIVIDE ROUTINE WILL CALCULATE THE INTEGER RESULT AND
REMAINDER OF A FOUR DIGIT NUMBER DIVIDED BY A TWO DIGIT NUMBER.
BY ENTERING CLD (FOR HEX.) OR SED (FOR DECIMAL) EITHER BASE MAY BE
USED, SINCE IT WORKS BY SUBTRACTING THE DIVISOR SUCCESSIVELY FROM
THE DIVIDEND. THE ROUTINE PROMPTS WITH XX@@0@XX FOR THE DIVIDEND
AND THEN XXXX11XX FOR THE DIVISOR. THE ANSWER WILL APPEAR IN
THE FORM ABCD.EF WHERE ABCD IS THE INTEGER RESULT AND EF IS THE
REMAINDER.

DIVIDER
ADDR HEX LABEL INSTRUCTION COMMENTS
CODE
0200 D8 OR F8 CLD ORSED — BINARY (DECIMAL) OPERATION

0201 84 20 STY 220 DIVIDED CLEAR DIVIDEND — PROMPT FOR

0203 84 21 STY 221 NUMBER
9205 A9 1M LDA #11 — PROMPT FOR SECOND NUMBER
0207 85 22 STA Z 22 DIVISOR

0209 A2 20 LDX #20

g208 20 88 FE JSR QDATFET — FETCH DIVIDEND

020E A2 22 LDX #22
9210 20 88 FE JSR QDATFET — FETCH DIVISOR
@213 84 24 STY 224 RESULT — CLEAR RESULT
9215 84 25 STYZ25

THE OTHER FOUR ARE NEW, THEY ARE SHIFTS AND ROTATES. LET’S USE ASL
AS AN EXAMPLE
070 A9 55 LDA #55 LOAD A IMMEDIATE WITH 55

72 QA ASLA ARITHMETIC SHIFT LEFT

73 2060 FE JSR FE60 JUMP TO SUBROUTINE

76 4CQAFF JMPFF@4 JUMP
THE RESULT OF RUNNING THIS PROGRAM IS AA ON THE DISPLAY. EACH BIT
IN THE ACCUMULATOR HAS BEEN SHIFTED ONE BIT LEFT.

C A
BEFORE 01010701

AFTER / 10101010 0

ROLA, ROTATE LEFT ACCUMULATOR, (2A) WILL HAVE THE SAME EFFECT,
EXCEPT THAT THE RIGHT INPUT @ IS REPLACED BY C, IN THIS CASE 1, SO
THE RESULT IS AB.

LSRA,LOGICAL SHIFT RIGHT ACCUMULATOR (4A)

c
BEFORE m/\ G1019101 A
AFTER 10161610

RORA, ROTATE RIGHT ACCUMULATOR (6A) WILL REPLACE THE LEFT INPUT @
WITH C TO GIVE AA
ALL THESE INSTRUCTIONS MAY BE USED DIRECTLY ON MEMORY LIKE INC 2.
4.5 MISCELLANEOUS REMAINING INSTRUCTIONS
THERE ARE A FEW INSTRUCTIONS LEFT, WHICH WILL HAVE TO BE DEALT
WITH PIECE-MEAL:
BRK @@ : THE MICROPROCESSOR HAS TWO INTERRUPTS, AS EXPLAINED IN
. THE HARDWARE SECTION, AND THE INSTRUCTION SIMULATES AN
KTWV{ J., » IRQ, FIRST SETTING THE B FLAG IN THE STATUS REGISTER. THE
w RETURN AFTER A BREAK WILL BE AT THE NEXT BUT ONE BYTE
BIT 2C : A COMBINATION OF TWO INSTRUCTIONS
I READ MEMORY BITS 6 & 7 INTO THE OVERFLOW &
NEGATIVE FLAGS
1 LOGICAL AND ACCUMULATOR AND MEMORY, A ZERO
: RESULT SETTING THE Z FLAG. THE RESULT IS NOT
LOADED INTO THE ACCUMULATOR. THE INSTRUCTION
IS USUALLY USED TO TEST THE STATUS OF
PERIPHERAL DEVICES, WITHOUT UPSETTING A XOR Y.
RTI,RTS 40,60 BOTH INSTRUCTIONS PULL THE PROGRAM COUNTER FROM

,]\ THE STACK, RTI FIRST PULLS THE PROCESSOR STATUS
! FROM THE STACK.
"
- EAF -
J»J {

CHAPTER 5: ACORN HARDWARE

5.1 CHIP LAYOUT AND BUS

BEFORE PLUNGING DEEPER INTO SOFTWARE WE’'LL TAKE A REST AND LOOK
AT THE HARDWARE. WE'LL START WITH THE CPU BOARD

%)
T 2
Ia)
< J—
o w — - O
o — —
©
-
(o] [H1]
~— w
~ L (.;J
™ o
(]
<
= -
~ » (@]
Lo 0D o) ™ S
To) Te} O §— O
<+ < w -]
~ M~ - <
<t [
™~
< <t
pa © -
o o
o <
o~
ool oS
-] .
< <
~ ~
o~
O
< 10 L 1
©
|
<
|_
>
O
o
-— v —
[as) w
[eo)
= -
= n
P o
T QayUvOogA3d

SECTION 5.1

N

ROUTINES BY ENTERING THE SECTION OF PROGRAM FROM THE TITLE LABEL
(E.G.DIVIDE) TO THE RESULT LABEL AND SUBSTITUTING THE LINE

60 RESULT RTS
ALL ARE RELOCATABLE.

SYSTEM PROGRAMS

THESE PROGRAMS ARE ALL SHORT ROUTINES WHICH CAN PROVE USEFUL
TIME SAVERS AT THE DEVELOPMENT AND INPUT STAGES OF PROGRAM
WRITING.

IT MAY BE FOUND USEFUL TO KEEP COPIES OF THEM ON TAPE AND TO HAVE
THEM IN THE ACORN AND BESIDE YOU WHILE DEVELOPING PROGRAMS.
BRANCH CALCULATIONS IN PARTICULAR ARE A FERTILE SOURCE OF
ERRORS AND TIME WASTING IN ANY HAND ASSEMBLED PROGRAM.

THE RELOCATOR WILL MOVE PROGRAMS AROUND MEMORY FOR YOU. A
GODSEND TO ANYONE WHO FINDS THEMSELVES WITH THE NEED TO
REENTER LARGE CHUNKS OF CODE MANUALLY.

MISCELLANEOUS

THIS IS A SELECTION OF PROGRAMS AND ROUTINES INCLUDED BECAUSE
THEY ARE INTERESTING, ELEGANT OR IMPORTANT. THEY SHOW SOME OF

OF THE THINGS THAT CAN BE DONE WITH THE SYSTEM, WHICH MAY BE MORE
THAN YOU IMAGINE. WE HAVE, FOR INSTANCE, RUN A CHESS GAME IN THE 1K
SYSTEM.

IN PARTICULAR THE METRONOME AND COUNTER PROGRAMS ARE INTENDED
TO DEMONSTRATE SOME OF THE USES OF THE KEYBOARD. IN ORDER TO
UNDERSTAND WHAT IS GOING ON WITH THESE PROGRAMS YOU WOULD BE
WELL ADVISED TO STUDY THE MONITOR LISTING AND PART 1 OF THIS
MANUAL.

MATHEMATICAL
THE SQUARE ROOT PROGRAM WILL CALCULATE EITHER DECIMAL OR HEXA-
DECIMAL SQUARE ROOTS ACCORDING AS CLD (FOR HEX) OR SED (FOR
DECIMAL) ISENTERED AS THE FIRST LINE. IN EITHER CASE THE PROMPT
WILL BE XX@000XX . THE SQUARE SHOULD BE ENTERED, A CONTROL KEY
PRESSED AND THE ROOT WILL APPEAR ON THE DISPLAY.
THE PROGRAM IS BASED ON THE EQUALITY

((N+1)*(N+1)) —(N*N)=(2«N)+1
AND SUCCESIVELY SUBTRACTS 1,3,7,9 ETC. FROM THE SQUARE. WHEN THE
RESULT OF A SUBTRACTION GOES NEGATIVE THE NUMBER OF SUBTRACTIONS

DONE TO DATE IS THE ROOT.
HEX/DEC SQ ROOT.

ADDR HEX LABEL INSTRUCTION COMMENTS RELOCATABLE
CODE

@200 F8 OR D8 SED (OR CLD) — SETDECIMAL (BINARY) OPERATING

9201 84 21 STY 2 SQH — CLEAR SQUARE TO PROMPT

¢203 84 20 STY Z sQL

0205 A2 20 LDX #saL

9207 20 88 FE JSR QDATFET — FETCH THE NO. WHOSE ROOT IS TO
BE FOUND

020A 84 24 STY 2 SUBH — CLEAR HIGH PART OF
SUBTRACTING NO.

920C 84 22 STY 2 ROOT — CLEAR ROOT

020€ (or] INY

PART 2
APPLICATION PROGRAMS
MATHEMATICAL
1. SQUARE ROOT (HEX. OR DECIMAL)
2. DIVIDE (HEX. OR DECIMAL)
3. SINGLE BYTE MULTIPLY
4, DOUBLE BYTE MULTIPLY
SYSTEM
. DECIMAL TO HEX.
. HEX.TO DECIMAL
. BRANCH OFFSET CALCULATOR
. RELOCATOR
. TAPE USE PROGRAMS
. SCROLL
GAMES
1. NIM
2. DUCK SHOOT
MISCELLANEOUS
1. COUNTER
2. KEYBOARD COUNTER ROUTINE
3. METRONOME
4. EIGHT QUEENS PROBLEM

GENERAL

THESE APPLICATIONS PROGRAMS ARE INTENDED TO DEMONSTRATE SOME
OF THE CAPABILITIES OF THE SYSTEM AND OF THE PROCESSOR. THEY HAVE
BEEN DESIGNED FOR CLARITY AND SIMPLICITY AND IN MANY CASES ARE
NOT OPTIMAL EITHER IN TERMS OF LENGTH OF PROGRAM OR OF EXECUTION
TIME. THEY ARE INTENDED SIMPLY TO GIVE YOU A FEEL FOR THE SYSTEM
AND SOMEWHERE TO START OFF FROM.

ALL PROGRAMS MARKED RELOCATABLE CAN BE ENTERED ANYWHERE IN
AVAILABLE MEMORY, SUBJECT TO NOT IMPINGING IN VARIABLE STORAGE
SPACE FOR EITHER THE PROGRAM OR MONITOR AND NOT USING SPACE
NEEDED BY THE STACK. (FOR STACK USAGE SEE RELEVANT SECTIONS OF
PART 1 OF THIS MANUAL))

AS FAR AS HAS PROVED POSSIBLE THE CONVENTION OF A XX @0@@ XX
PROMPT FOR THE FIRST NUMBER TO BE ENTERED AND XX 1111 XX FOR THE
SECOND HAS BEEN OBSERVED IN THESE PROGRAMS. AFTER ENTERING A
NUMBER CHECK THAT 1T IS CORRECT AND THEN PRESS A CONTROL KEY
{ANY ONE WILL DO) TO PROGRESS THROUGH THE PROGRAM.

YOU SHOULD NOW BE READY TO TYPE (N THE PROGRAMS AND RUN THEM,
BOTH TO ASSURE YOURSELF THAT THE SYSTEM IS OPERABLE AND TO
FAMILIARISE YOURSELF WITH ITS OPERATION.

THROUGHOUT THESE NOTES X INDICATES AN UNDEFINED/UNIMPORTANT
CHARACTER.

MOST OF THE PROGRAMS WERE WRITTEN BY MARK I'ANSON, THANK YOU
MARK I.

MATHEMATICAL PROGRAMS
ALL THESE ROUTINES RESET THEMSELVES WHEN A CONTROL KEY IS PRESSED
AFTER THE NUMBER HAS BEEN OBTAINED. THEY MAY ALL BE USED AS SUB

DAL WN -

THE OBVIOUS IMPORTANT DEVICE HERE iS A, THE MICROPROCESSOR. THIS IS
WHERE A,X,Y,P,S,PC LIVE. FROM HERE COME THE COMMANDS TO RUN
EVERYTHING ELSE. THERE ARE TWO PRIMARY BUSSES, CONSISTING OF
PARALLEL PATHS OF BINARY DATA, THE BIGGEST BUS IS THE ADDRESS BUS.
THIS CONSISTS OF 16 LINES TO TRANSFER THE ADDRESS GENERATED BY
THE PROCESSOR TO THE ADDRESS INPUTS OF ALL OTHER SYSTEM CHIPS.
THIS BUS IS UNIDIRECTIONAL : ONLY THE PROCESSOR (IN A NORMAL
SYSTEM) GENERATES ADDRESSES, AND IT HAS 216 STATES (=65536,) THE
SECOND BUS IS THE DATA BUS. THIS IS 8 BI-DIRECTIONAL LINES, ALLOWING
A SINGLE WORD/BYTE TO BE TRANSFERRED EITHER FROM THE PROCESSOR
TO MEMORY — AWRITE, OR FROM MEMORY TO PROCESSOR — A READ.

THE REMAINING BUS IS THE CONTROL BUS, ITS MEMBERS HAVE NO
PARTICULAR RELATIONSHIP WITH EACH OTHER, BUT THEY ARE ALL SUPER-
VISORY SIGNALS FOR THE SYSTEM. THE FIRST CONTROL SIGNAL IS THE R/W
LINE. THIS SPECIFIES THE TYPE OF DATA TRANSFER THAT THE PROCESSOR
WISHES TO MAKE: WHEN THE R/W LINE IS HIGH (LOGIC ONE; > 2.4 V DC) THE
PROCESSOR IS READING WHEN THE R/W LINE IS LOW (LOGIC ZERO <@ 8 V DC)
THE PROCESSOR IS WRITING,THE NEXT CONTROL LINES ARE THE SYSTEM
CLOCK, WHICH CONTROLS THE TIMING OF ALL DATA TRANSFERS. THE
PROCESSOR, WITH HELP FROM 1/6 OF A TTL IC, GENERATES THE SYTEM
CLOCK AS TWO NON-OVERLAPPING SQUARE WAVES, PHASE ONE (01) & PHASE
TWO (02) =

g1 —

DURING 01 THE ADDRESS BUS AND THE R/W LINE CHANGE, AT THE END OF,
OR DURING, 82 THE DATA IS TRANSFERRED. OTHER CONTROL SIGNALS ALSO
CHANGE AT TIMES SPECIFIED WITH RESPECT TO THE SYSTEM CLOCK, E.G.
THE SYNC SIGNAL : THIS GOES HIGH DURING 01 WHEN THE PROCESSOR IS
FETCHING AN INSTRUCTION,AND RETURNS LOW WITH THE TRAILING EDGE
OF 02

5.2 RESET. INTERRUPT REQUEST AND NON-MASKABLE INTERRUPT
ANOTHER CONTROL LINE IS RESET. THIS IS GENERATED BY SUITABLE HARD-
WARE(IN THE ACORNTHE CORNER SWITCH ON THE CPU BOARD, AND THE RE-
SET SWITCH ON THEKEYBOARD,) ANDCAUSES ALL PARTS OF THE SYSTEM TO
BE RESET TO A SAFE, KNOWN STATE. IN THE PROCESSOR'S CASE RESET
INITIALIZES THE PROGRAM COUNTER TO THE CONTENTS OF ADDRESSES
FFFC AND FFFD WHICH, FOR ACORN, CONTAIN THE ADDRESS FEF3.
EXECUTION OF THE ACORN MONITOR STARTS THERE. PERIPHERAL DEVICES
SHOULD BE SET TO THEIR LEAST DANGEROUS STATE BY RESET, E.G.
REMOVE INTERRUPT CAPABILITY,SET ALL PROGRAMMABLE INPUT/OUTPUT
LINES TO INPUTS.
THE TWO PUSH BUTTONS ON THE CPU BOARD ON EITHER SIDE OF THE RESET
BUTTON ARE INTERRUPT BUTTONS. THE IDEA OF AN INTERRUPT IS TO
PULL THE PROCESSOR AWAY FROM IT'S CURRENT TASK, LET IT BRIEFLY DO
SOMETHING IMPORTANT AND THEN RETURN TO IT'S TASK AS IF NOTHING
HAD HAPPENED. THE 6502 HAS TWO DISTINCT INTERRUPT CAPABILITIES
1IRQ
WITH AN INTERRUPT REQUEST, [RQ, THE PROCESSOR HAS THE OPTION OF
IGNORING IT. AN IRQ ISONLY GRANTED IF THE FLAG I (INTERRUPT
DISABLE) IN THE PROCESSOR STATUS REGISTER IS @. THE PROCESSOR
THEN PUSHES PC & P & THEN SETS1TO 1. (THE STATE OF THE IRQ LINE IS
CHECKED BETWEENINSTRUCTIONS . .. IF IT REMAINS LOW,WE DON'T
WANT ANOTHER INTERRUPT). THEN THE PROCESSOR LOADS PC FROM
LOCATIONS FFFE & FFFF AND CONTINUES. NOTE THAT AN RT!I RETURNS
THE ORIGINAL P, WHICH HAD THET FLAG 9.
NMI
WITH A NON-MASKABLE INTERRUPT, NMI, THE PROCESSOR HAS NO
OPTIONS; WHEN THE LINE HAS BEEN LOW FOR AT LEAST TWO CLOCK
CYCLES, THE PROCESSOR WILL FINISH ITS CURRENT INSTRUCTION, SAVE
ITSSTATUS & PC, SETTI HIGH AND FETCH A NEW PC FROM FFFA & FFFB.
TO AVOID RECOGNISING ANOTHER INTERRUPT NMI IS EDGE-SENSITIVE:
NO FURTHER INTERRUPTS ARE RECOGNISED UNTIL NMI HAS RETURNED
HIGH. SINCE NMI SETSTHIGH, IRQWILL NOT SUCCEED DURING THE
NORMAL OPERATION OF AN NMI PROGRAM, BUT NMi WILL BE ABLE TO
TAKE CONTROL DURING EXECUTION OF AN IRQ PROGRAM; IT HAS A
HIGHER PRIORITY. .
IRQ, NMI, & RESET ARE OPEN-COLLECTOR LINES ON THE CPU BOARD: MANY
INTERRUPTING/RESETTING DEVICES MAY BE CONNECTED.

+5V

4K DEVICE 1

N

RST, IRQ, NMI ;l EI_—' >L— DEVICE 2
oV

-’

0A

@D
@D

FF
oE
o0

13

12

FE

(1]}

o
o1
01

FE
FF

58
70

79

4F

a7
7C
7

BREAK

Y pil

FONT

NMIVEC
RSTVEC
IRQVEC

STAZ R0 -

STX Z R1
STY Z R2
PLA
PHA
STAZ R3
LDX #R3

[T N T B |

LDA # FF —

STA Z REPEAT
JSR QUAD -

TSX -
STX 2 R7
INY -

STY ZR6
CLD -

LDA, X 9102 —
SEC

SBCZ RECAL
STA, X 0192
STAZ RS
LDA, X 9103
SBC #09
STA, X 9103
STAZ R4
LDX #R7

[R R I I N I |

JSR QUAD -
JMP RE-ENTER —

,mr 03 _

‘4" 576" 7"
89" ‘A" b’
‘e 'dE R
NMI -
RESET -
IRQ -

WHEN THE IRQ/BREAK VECTOR

POINTS HERE THEN DISPLAY
DISPLAY EVERYTHING — SAVE A

SAVE X

SAVE Y

GET P OFF STACK

PUT IT BACK FOR FUTURE USE
STORE Q IN REGISTER 3

SET X TO POINT AT REGISTERS
3@ FOR QUAD

KILL POSSIBILITY OF DISPLAY
BEING ON SINGLE SCAN

USE QUAD TOWRITEOUTA X YP
GET STACK POINTER

Y ZERO SINE QUAD ENDED WITH
DISPLAY SO THIS FORMS 01

CLEAR DECIMAL MODE FOR BINARY
SUBTRACT — DOESN'T AFFECT
USER SINCE P IS STACKED

GET PCL OFF STACK

CORRECT IT BY AMOUNT IN RECAL
PUT IT BACK ON STACK

AND STORE IT FOR QUAD

PCH OFF STACK

REST OF TWO BYTE SUBTRACTION
PUT IT BACK ON STACK

AND STORE IT FOR QUAD

POINT X AT THESE REGISTERS —
QUAD WILL DESTROY THEM

QUAD WRITES OUT PC SP

AND THE WHOLE SHEBARG STARTS
OVER AGAIN

7 SEGMENT FORMS OF THE HEX
DIGITS

POINT TO THE ADDED INDIRECTION
POINT TO THE RESET ENTRY POINT
POINT TO THE ADDED INDIRECTION

oD
oF
FFA3
FF AB
A7
FFAA

FFAD
FF BO

5E
oc
BC
00

F8
DD

21
AQ
F3
1
o0

@6

18
L)
@2
18
00
5E

04
1C
1E

FE
FE

FE

FE

FE

FE
0E

FE

FE
FF

00

“MODIFY"’

N1
“GO"’
N2

"STORE"

[.98

DATAS

gwn

“LLOAD”
ADDRSL

DATAL

"POINT"

SET

ouT

WAYOUT
NMI
IRQ

JSR MHEXTD
JSR DISPLAY
BCS SEARCH
LDA (89, X)
ASL A

ASL A

ASL A

ASL A

ORA Z KEY
STA (00, X)
JMP “MODIFY*
BNE N2

JMP (GAP)
CPX #04
BEQ POINT
LDX #08

STXZD

JSR QDATFET
LDX #04

LDA Z.X 05
JSR PUTBYTE
DEX

BNE ADDRESS
LDA (96, X)

JSR PUTBYTE
JSR COM16
BNE DATAS
BEQ WAYOQUT
LDX #04

JSR GETBYTE
STA Z,X 95

DEX

BNE ADDRSL
JSR GETBYTE
STA (86, X)
STA 1PIB

JSR COM16
BNE DATAL
BEQ WAYOUT
LDA (2@, X)

BEQSET

STAZP
LDA #00

BEQ OUT
LDAZP

STA (20, X)
JSR MHEXTD
JMP RESTART

JMP (USERNMI)
JMP (USERIRQ)

DISPLAY THE MEMORY
AND GET KEY

IF NOT HEX DO OVER
HEX SO GET OLD INFO

MOVED ALONG

AND PUT IN NEW INFO
AND PUT IT BACK

THEN KEEP DOING IT
MUST BE4OR6AS 21S
THE VERY SIMPLE GO

ISIT 4 0R 67

WELL IT'SNOT 4

SO IT MUST BE 6 — X NOW POINTS
TO TAP

GIVE PROMPT

AND GET 2ND STORE INFO
LOOP COUNT

SEND ADDRESSES TO TAPE

X NEATLY ZEROED ON EXIT
DATA SEND — GET INFO FROM
MEMORY

AND SEND IT TO TAPE

SEE IF PRINTED

NO

YES

RESCUE ADDRESSES FROM TAPE
PUT THEM IN FAP & TAP, THOUGH
IT COULD BE ELSEWHERE

X NEATLY SERVED AGAIN

GET DATA FROM TAPE

AND STORE IT IN MEMORY

AND ON THE DISPLAY SO IT CAN BE
SEEN

SEE IF FINISHED

NO

YES

SET/CLEAR BREAK POINT — GET
DATA FROM ADDRESSED MEMORY
IF ZERO BREAK POINT HAS
ALREADY BEEN SET = MUST CLEAR
iT

NOT ZERO SO SAVE THE
INFORMATION

AND PUT IN A BREAK POINT

WAS SET SO GET OLD
INFORMATION BACK

INSERT BREAK POINT OR OLD
INFORMATION

NOW READ IT OUT AGAINTO
REVEAL ROM

GO BACK & DO IT ALL OVER AGAIN
INDIRECTION ON NMI
INDIRECTION ON IRQ

ADDRESS

BUS

TO DECIDE WHICH DEVICE CAUSED AN INTERRUPT THE PROCESSOR CHECKS
A STATUS REGISTER OF EACH DEVICE, USING THE BIT INSTRUCTION TO TEST
BIT 7 OF THE DEVICE. AFTER EXECUTING THE PROGRAM REQUIRED FOR A
PARTICULAR DEVICE THE PROCESSOR RESETS THE DEVICE'S INTERRUPT
BEFORE EXECUTING ITS RTL IF THE INTERRUPT LINE IS STILL LOW (IRQ) OR
MAKES ANOTHER NMI THE WHOLE THING IS REPEATED. THIS PRIORITIES THE
INTERRUPTS IN SOFTWARE.

5.3 6502 INTERNAL ARCHITECTURE

-«—— REGISTERS CONTROL ———m

/ T B v
] INDEX &2 -—
9) Y (8)
1 —--—f Vss
-
(1) (121
2 - INDEX [
{11) X
3 <] RDY (2)
1) 2 TIED HIGH ON ACORN
<
“;) — STACK K2
5 -t | . L——DSYNC ™)
5 - &
6 -l - la—{ 20
(15) ALY s ES fe————5.0.(38)
- < ZWw
7 @TO zy TIED HIGH ON ACORN
(16) ;('
z l
8 Accumulator [TIMING
a7 A z ONTROU
9 -
(18) 0
Program 7 ——
(:g) - < C[Jugnter PCL k) r
e _ < PcH e L n ‘
ROCESS
(20) a Cﬁ CLOCK CLOCK
2 < Tp STATUS ceneraTor [+ INPUT @ G7)
INPUT l
(fz) ~—] E::I'réH cﬁ -
23) | S =N SR L————= (32 (39}
|—> R
) - M (34)
24) DATA BUS INSTRUCTION
i | L BUFFER c=‘|__ REGISTER
\
(25) va (33]
> 1 (32)
»2 (31)
= BYTE LINE —>3 (39)| DATA
ﬂ -4 (29)| BUS
=5 (28)
t =18BIT LINE »6 (27)

(26}

7

() PINNUMBER

5.4 PROMS, EPROM, RAM, RAM I/O

THE NEXT THINGS CONNECTED TO THE CPU ARE DEVICES D. THESE ARE
PROMS: PROGRAMMABLE READ ONLY MEMORYS. EACH CONTAINS 512 X 4
BITS OF INFORMATION WHICH HAS BEEN FIXED AS HALF OF THE ACORN
MONITOR. SHORT OF CATASTROPHIC DESTRUCTION THERE IS NOWAY TO
MAKE A ‘HIGH PART OF THE MEMORY ‘LOW’, BUT ‘LOW’ PARTS CAN BE
PROGRAMMED 'HIGH' BY PASSING EXCESS CURRENT THROUGH A FUSE AND
DESTROYING IT. IN NORMAL ACORN OPERATION THESE TWO DEVICES WILL
BE ENABLED BY ANY ADDRESS IN THE RANGE F8@9 TO FFFF: THEY THUS
OCCUR IN THE MEMORY FOUR SEPARATE TIMES, MORE ON THIS ANON.

AKIN TO D, IS DEVICE E. THIS IS NOT PART OF THE KIT, BUT IS INTENDED
TOBE A2p48 X 8 EPROM: ERASEABLE PROGRAMMABLE READ ONLY MEMORY.
LIKE THE PROM, THE EPROM CAN BE PROGRAMMED ALTHOUGH FUSES ARE
NOT BLOWN BUT CHARGE IS STORED ON THE GATE OF A FIELD EFFECT
TRANSISTOR (F.E.T.). THIS CHARGE CAN ONLY LEAK AWAY SLOWLY — ABOUT
TEN YEARS, UNLESS THE GATE |S EXPOSED TO ULTRA-VIOLET LIGHT WHICH
HAS ENOUGH ENERGY TO SET THE DEVICE BACK TO IT'SSTANDBY STATE.
(IF YOU MAKE ONE PROGRAM MISTAKE THE WHOLE DEVICE MUST BE
ERASED TO ALLOW YOU TO CORRECT THE MISTAKE. STILL,IT'SBETTER
THAN NOT BEING ABLE TO CORRECT A MISTAKE ASWITH THE PROM). AN
ENABLE SIGNAL IS PROVIDED BETWEEN F@@0 & F7FF FOR THIS DEVICE, OR
ELSE IT MAY BE PROGRAMMED WITH A LARGER MONITOR AND ENABLED BY
THE F800 — FFFF SIGNAL. SMALLER (1024 X 8 or 512 X 8) EPROMS MAY ALSO
BE FITTED IN SOCKET E, BUT THESE OLDER DEVICES USUALLY REQUIRE
ADDITIONAL POWER SUPPLIES, AND TWO MODIFICATIONS TO THE CIRCUIT
BOARD ARE REQUIRED TO ALLOW THIS.

THE LAST TYPE OF MEMORY ON THE CPU BOARD IS TYPE C. THIS IS A STATIC
READ/WRITE MEMORY: INFORMATION CAN BE CREATED AND DESTROYED
BY THE MICROPROCESSOR ITSELF, BUT ALL IS LOST WHEN THE POWER IS
REMOVED. TOGETHER WITH THE DYNAMIC VERSION, THIS TYPE OF DEVICE
HAS RECEIVED THE NAME RANDOM ACCESS MEMORY R.AM., ALTHOUGH
THEY ARE NO MORE RANDOM THAN P.R.O.M.S. OR E.P.R.O.M.S. DEVICES C
ARE 1924 X 4 RAMS, TWO ARE REQUIRED LIKE THE TWO PROMS TO BUiLD UP
A WHOLE BYTE, AND THEY ARE ENABLED BY ADDRESSES IN THE RANGE
@000 TO O3FF. THEY THUS CONTAIN ZERO PAGE & PAGE 1, THE STACK PAGE,
ASWELL AS TWO FURTHER PAGES.

THE ENABLE SIGNALS FOR ALL I.C.S. ON THE CPU BOARD ARE PROVIDED BY
THE LOGIC I.C."S G. THESE |.C.S. DECODE CERTAIN RANGES OF ADDRESSES
FROM THE ADDRESS BUS BY RECOGNISING A PATTERN ON HIGH ADDRESS
LINES, E.G. FOR THE SIGNAL TO THE TWO RAM'S THE TOP 6 (A15—-A10)
ADDRESS LINES MUST BE LOW (LOGIC ZERO).THE SIGNALS ARE ALL
BROUGHT TO THE SOCKET F, WHERE LINKS CAN BE MADE (OR A D.I.L.
HEADER USED) TO TAKE THE ENABLE SIGNALS AWAY TO THE CHOSEN
DEVICES THUS MANY DIFFERENT SYSTEM CONFIGURATIONS CAN BE USED,
FROM JUST THE TWO P.R.0.M.S AND DEVICE B1, THROUGH TO BOTH C'S, B2 &
E OR ANY COMBINATION.

DEVICES B HAVE TWO FUNCTIONS. IN THE FIRST PLACE EACH CONTAINS A
128 X 8 RAM, BRINGING THE CPU BOARD UP TO 1280 BYTES OF R.AM.
SECONDLY EACH HAS THE FACILITIES FOR MAKING TWO WORDS OF MEMORY

1P

FF34

FF 39
3A
3E
M
43

i "
g

20
F6
DA
FF
23

oe
80

oE

F7
10
88
02

15

QE

QE

FE

FE

RESET

INIT

‘Rouro

RESTART

RE-ENTER

SEARCH

“RETURN"’

nyp*

“DOWN*’

NODEC

FF ENTERM
FEY

€€, Fae

FETADD

ASL 1PIA
ROR A
DEY

BNE INPUT
BEQ WAIT

LDX #FF

TXS

STX 1BDDR
STX 2 REPEAT
LDY #80

LDX #09

STY Z, X REPEAT
DEX

BNE ROUND
JSR DISPLAY

BCC INIT
AND #97

CMP #04
BCC FETADD

BEQ LOAD
cMP #06
BEQ ""UP"*
BCS "“DOWN'"
LDA Z RO
LDX Z R1
LDY Z R2
RTI

INC Z,X 00
BNE ENTERM
INC Z2,X 01
BCS ENTERM

LDA Z.X 09
BNE NODEC
DEC Z.,X @1
DEC Z2,X 00
JSR QHEXTD1
JMP “MODIFY*’

STY 2 D+6
STY Z D+7

ASL A
TAX

EOR #F7
STAZD

JSR QDATFET
CPX #02

BCS NI

Ny

[A

GET SAMPLE AUTO CARRY
AND AUTO A

KEEP GOING

USE WAIT TO GET OUT ONTO THE
THE SHOP BIT HIGH

MAIN PROGRAM

INITIALIZE STACK

AND B DATA DIRECTION REGISTER
MULT!-SCAN DISPLAY MODE

THE FAMILIAR DOT ON THE
DISPLAY

ALL EIGHT DISPLAYS AND
INITIALIZE EXEC

Y USED FOR AMUSEMENT

X ZERO ON EXIT, SO UP & DOWN
IMMEDIATELY VALID

MARK RETURN TO MONITOR POINT
DISPLAY DISPLAY & GET KEY

HEX KEY GETS THE DOTS BACK
REMOVE ANY STRAY BITS
(EFFECTIVELY SUBTRACT 19)

KEYS OF VALUE LESS THAN 4
NEED AN ADDRESS
KEY 4 IS THE LOAD KEY

KEY 6 1S UP

& KEY 7 IS DOWN

MUST BE KEY 5 — GET A BACK
GET X BACK

GET Y BACK

GET P & PC BACK & CONTINUE
FROM WHERE YOU WERE

16 BIT INDEXED INCREMENT

A BRANCH ALWAYS : THE CARRY
WAS SET BY THE FF11 COMPARE
16 BIT INDEXED DECREMENT

NOW DISPLAY THE VALUE

AND GET INTO THE MODI{FY
SECTION

CLEAR DISPLAYS 6

& 7 — Y WAS ZERO ON EXIT FROM
DISPLAY

DOUBLE A

THE ZERO PAGE ADDRESSES MAP,
GAP, PAP & FAP

FIX UP DIGIT @ COMMAND SYMBOL

FETCH THE ADDRESS, AUTO MAP,
GAP, PAP OR FAP

CHECK X TO FIND OUT WHICH
COMMAND WE’RE DOING
MUSTBE 2,40R6 —AS@IS

60

-

20 64 FE QDATFE7

20 @C FE

BO 20
AD 04
A
0A
0A
0A
oA

36 o0
36 01
88

D@ F8
FO E8
F6 06

DO @2
F6 07
BS 06
D5 (87,
DO B4
B5 07
D5 09
60

A0 40

8C 22

AD 07

8C 20

6A

6A

20 CD
6A

8D 20

88

10 F6
20 CD
8C 20

20 DO

84 1A
AD 48

88

D@ FD
88

D@ FD
A4 1A
60

AQD 08
2C 20

30 FB

20 DO FE

SHIFTIN

COM 16

NT
DINC

‘08 nKor

oE
Q€

FE

QE

FE
QE
FE

(113

RETURN
PUTBYTE

AGAIN

WAIT
% WAIT
WAIT 1

WAIT 2

GETBYTE

START

20 CD FE INPUT

RTS
JSR QHEXTD1

JSR DISPLAY
BCS RETURN
LDY #04
ASL A

ASL A

ASL A

ASL A

ASL A

ROL Z,X 00
ROL ZX @1
DEY

BNE SHIFTIN
BEQ QDATFET
INC Z2,X 06

BNE NOINC
INC 2X @7
LDA Z X @96

CMP 2,X 08
BNE RETURN
LDA Z,X 07
CMP Z,X 09
RTS

LDY #40

STY 1ADDR
LDY #97
STY 1PIA
ROR A
ROR A

JSR WAIT
ROR A

STA 1PIA

DEY .- "RfL

(BNEAGAIN
JSR WAIT
STY 1PIA
JSR % WAIT

STYZTY
LDY #48
DEY

BNE WAIT 1
DEY

BNE WAIT 2
LDY Z TY
RTS

LDY #08
BIT 1PIA

BMI START
JSR Y. WAIT

JSR WAIT

QUAD DATA FETCH — DISPLAY OLD

DATA
GET KEY

NON HEX RETURN
LOOP COUNTER

DIGIT IN A IN CORRECT PLACE
MULTI SHIFT TO GET DIGIT INTO

MEMORY
INDEXED

KEEP SHIFTING IN

GO AND DO IT ALL AGAIN
INCREMENT & COMPARE 16 BIT
NOS — INCREMENT LOWER

NO HIGH INCREMENT

LOWBYTE EQUALITY TEST

NO NEED TO DO HIGH BYTE
HIGH BYTE EQUALITY TEST

PUT BYTE TO TAPE — CONFIGURE

1/0 PORT

LOOP COUNTER

AND SEND THE START BIT

BACK A UP A COUPLE OF BITS
WAIT TO SEND OUT RESET BIT
SENDING ORDER ISBIT@—>BIT 7

SEND BIT

KEEP GOING

WAIT FOR THAT BIT TO END
SEND STOPBIT : YIS FF
300 BAND WAITING TIME — IN TWO

PARTS

¥% THE WAITING TIME —SAVE Y
72 X 58 DELAY
PART ONE OF THE WAIT

Y WAS ZERO ON ENTRY — 266 x 5uS

DELAY

RETRIEVE Y

GET BYTE FROM TAPE — LOAD

COUNTER

WAIT FOR 1 >@ TRANSISITON —

A START BIT

WAIT HALF THE TIME, SO
SAMPLING IN THE CENTRE
FULL WAIT TIME BETWEEN

SAMPLES

(16 BITS) APPEAR IN A USABLE FORM FOR THE OUTSIDE WORLD. THE ACORN
MONITOR USES DEVICE B1 TO CONTROL THE DISPLAY, CASSETTE INTERFACE
AND KEYBOARD.

EACH ONE OF THE 16 LINES MAY BE PROGRAMMED TO BE AN INPUT OR AN

CONTROL Data PORT k= pA7—PAG
us
LINES A
Buffer
Def[nition —» [NTR
Data
DB7—-D80 Bus
Buffer
> PB7—PB(@
Bit
Operation J 128 x 8 RAM
ADG—AD®

8154 RAM 1/0

OUTPUT DEPENDING ON THE STATE OF INTERNAL CONTROL REGISTERS.
ONLY A GENERAL DESCRIPTION OF THE DEVICE IS GIVEN HERE, IN
ADDITION TO THE FOLLOWING FUNCTIONS PORT A MAY BE SET TO
OPERATE IN A VARIETY OF DIFFERENT HANDSHAKING TRANSFER MODES
BY USE OF THE MODE DEFINITION REGISTER. IT SHOULD BE NOTED THAT
THESE MODES REQUIRE CONNECTION OF INTERRUPT AND THAT THE
INS8154 INTERRUPT LINE IS THE INVERSE OF THAT REQUIRED BY THE
PROCESSOR.

THE 16 LINES ARE, AS YOU MIGHT EXPECT, DIVIDED INTO TWO SEPERATE
BYTE SECTIONS A & B. A & B BOTH HAVE AN “"OUTPUT DEFINITION
REGISTER'* ASSOCIATED WITH THEM. EACH BIT IN THE O.D.R. DEFINES THE
ASSOCIATED BIT IN THE ‘PORT" AS EITHER AN INPUT (@) OR AN QUPUT (1).
THUS, IN THE MONITOR WE WRITE FF TO THE SEGMENT O.D.R. TO USE ALL -4
IT'S LINES AS OUTPUTS, AND ‘DISPLAY’' WRITES ¢7 TO THE DIGIT DRIVE ‘
0.D.R. TO HAVE 3 OUTPUTS AND 5 INPUTS.

NOT ONLY MAY WE READ/WRITE TO THE OUTPUT PORT USING THE

PARALLEL READ & WRITE OPERATIONS, BUT WE MAY ALSO READ/WRITE

SINGLE BITS:

OPERATION ADDRESS LOW RMW
SET BIT® PORT A 10 W
SET BIT7 PORT A 17 w
CLEAR BIT@® PORT A 11 w
CLEAR BIT 7 PORT A 07 W
READ BIT® PORT A 00 or 10 R
READ BIT7 PORT A @7 or 17 R
SET BIT 1 PORT B 19 W
SET BIT6 PORT B 1E W
CLEAR BIT 2 PORT B oA w
CLEAR BITbH PORT B @D W A I
READ BIT4 PORT B @Cor1C R
PORT A 20 RorW
PORT B 21 RorW <
O.D.R.A. 22 w
O.D.R.B 23 W

IF YOU READ ASINGLE BIT ITWILL END UP INBIT 7 OF ABYTE, THUS THE
BIT INSTRUCTION WILL ASSIGN IT TO THE TESTABLE N FLAG.

THE INS8154 ALSO CONTAINS A USEFUL 128 BYTES OF RAM. THIS IS
CONTINUOUS FROM (ADDRESS LOW) 80 TO FF.

DEVICE B1 1S ENABLED FOR ADDRESS HIGH OF @E, DEVICE B2 IS AT ¢9.

FE 3E

40
42

44

48
FE4A
4C

4t
50

FEB2

54

E4

Do
Cc9

90
A9

Do
C5
Fo

85
49

29
co
85
A6

60
AD

AD
D9
AD
B5

20
88

88

B5

c8

19

Fo
38

04
80

E6
oF

oF
38
1F
19
@D

1A
21 Q€

o0
@6
0B
@3

o0
6F FE

N

7A FE

1A
oF

EA FF

10 00

BUTTON

PRESSED

OUTPUT

MHEXTD

RDHEXTD

QHEXTD1

QHEXTD2

DHEXTD

HEXTD

CPX ZCOL

BNE DELAY
CMP #38

BCC PRESSED
LDA #80

BNE KEYCLEAR

CMP 2 EXEC
BEQ DELAY

STA Z EXEC
EOR #38

AND #IF
CMP #10
STAZKEY

LDX ZTX
STY 1PIB
RTS

LDA (00, X)

LDY #06

BNE DHEXTD
LDY #03

ey
LDA 2{y00
JSR DHEXTD
DEY

DEY
LDA Z, X 91
INY

PHA
JSR HEXTD
DEY

PLA

LSR A
LSR A
LSR A
LSR A

STYZTY
AND #0F
TAY

LDA,Y FONT
LDY Z TY
STA,Y D

ARE WE ON THE SAME KEY'S
COLUMN?

NO

HAS A KEY ACTUALLY BEEN
PRESSED?

YES

NO, THEN CLEAR THE EXECUTION
STATUS — THE KEY HAS BEEN
PRESSED & RELEASED

ALWAYS BRANCH

A KEY HAS BEEN PRESSED

BUT IT HAS ALREADY BEEN
EXECUTED

SET IT AS BEING EXECUTED
JIGGERY POKERY TO ENCODE THE
ROW INPUTS TO BINARY

ALSO ENSURE THE KEY IN REPEAT
WAS OF REASONABLE SIZE

A HEX KEY OR NOT? CARRY CLEAR
IF HEX

PUT THE KEY IN A TEMP LOCATION
FOR FURTHER USE (BY “MODIFY")
RETRIEVE X

TURN THE SEGMENT DRIVES OFF
AND RETURN

MEMORY HEX TO DISPLAY = GET A
BYTE FROM MEMORY

RIGHT (OF DISPLAY) DOUBLE HEX
TO DISPLAY :SET Y TO RIGHT OF
DISPLAY

AND USE DHEXTD

QUAD HEX TO DISPLAY 1: SET Y
TOUSEPOSNS 1,23 &4

2: USE ANY Y: GET THE DATA

AND USE DHEXTD

HAVING DECREMENTED THE
POSITION

GET THE HIGH BYTE OF THE DATA
& USE DHEXTD

DOUBLE HEX TO DISPLAY : FIRST
HEX ON RIGHTEST POSITION
SAVE A

USE HEX TO DISPLAY

GET Y BACK TO CORRECT
POSITION

RETRIEVE A

ORIENTATED FOR OTHER HEX
DIGIT

HEX TO DISPLAY =SAVE Y
REMOVE SURPLUS BITS FROM A
&PUTITINT7

GET THE 7 SEGMENT FORM
RETRIEVE Y

AND POSITION THE 7 SEG FORM ON
THE DISPLAY

ADDR
FE®D
FE 02

04

@7
08

A
FEQC
FE QE

10

FE13
15

17
1A

1D
20
22

24
26

28
2A
2C
2E
FE30
FE 32
33
FE 36
38

3A
3C

HEX
CODE
AQ 06

B5 00
20 6F
CA

88

19 F6
86 1A
8E 22

AQ 00
B 10

8D 21
8E 20

AD 20
24 OF

19 18
70 QA

c9 38
B® 06
86 19
A9 49
86 OF
88

D@ FD
CA

10 DB
A5 QE

30 D2
10 14

LABEL

QUAD

STILL

FE

0E

QE
0E

QE

DISPLAY
RESCAN

SCAN

KEY
CLEAR
DELAY

ACORN MONITOR

INSTRUCTION
LDY #06

LDA ZX 00
JSR DHEXTD
DEX

DEY

DEY
BPLSTILL

STX Z TX
LDX #07
STX 1 ADDR

LDY #00
LDA 2 X D

STA 1PIB
STX 1PIA

LDA 1PIA
AND #3F
BIT Z EXEC

BPL BUTTON
BVS DELAY

CMP #38
BCS DELAY
STX Z COL

LDA #40

sTagECcec . ¥

DEY S
BNE DELAY
DEX

BPL SCAN

LDA Z REPEAT

BMI RESCAN
BPL OUTPUT

-~

COMMENTS

DISPLAY THE 4 BYTES AT X-3,X-2,

X—1& X IN THAT ORDER ON THE

DISPLAY:

— GET THE BYTE POINTED TO BY X

— USE DOUBLE HEX TO DISPLAY
ROUTINE

— NEXT X

— NEXT Y POSITION

— FALL AUTO DISPLAY WHEN
FINISHED —Y POSITION & ALSO
LOOP COUNTER

— SAVE X!t

— SCAN 8 DIGITS, NO MATTER WHAT

— SET UP DATA DIRECTION
REGISTER

— CLEAR Y FOR LATER USE

— GET DISPLAY DATA FROM THE
ZERO PAGE MEMORY

— & PUT IT ONTO SEGMENTS

— SET DIGIT DRIVE ON AND THE KEY
COLUMNS

— GET KEY DIGIT BACK

— REMOVE SURPLUS TOP BITS

— CHECK STATUS = ‘I' MEANS NOT
PROCESSING A KEY

— BUT @ MEANS THAT WE ARE

— THUS CAN BE BLOWN TO AN
ESCAPE FROM THE DISPLAY
ROUTINE ALTOGETHER ON STATUS
CO@ AT THE MOMENT IT IGNORES
KEYS IF GIVEN THIS STATUS

~ CHECK FOR ALL 1°S ROW INPUT
FROM KEYBOARD =SET COPY 10F SO

— |F ALL 1's THEN NO KEY HAS BEEN
PRESSED

— STORE THE PRESSED KEY'S
COLUMN INFORMATION

— SET STATUS TO “WE ARE
PROCESSING A KEY"

— Y WAS ZERO SO HERE IS A 256 X5US
DELAY
— Y WILL BE ZERO ON EXIT

— IF X WAS STILL TVE, CONTINUE
THIS SCAN

— |IF WE SHOULD CONTINUE
SCANNING THEN TOP BIT IS SET

— CONTINUE SCANNING

— IF TOP BIT IS ZERO, THEN USE THIS
DATA AS THE KEY ITSELF

ALSO ON THE CPU BOARD IS A 5V REGULATOR. THIS PROVIDES THE
REGULATED +5Vv POWER SUPPLY USED BY ALLTHE 1.C.S. ON THE BOARD, AND
THE KEYBOARD/INTERFACE BOARD WHEN CONNECTED. IF THE 2704 OR

27¢8 TYPE OF E.P.R.O.M. IS EMPLOYED IN SOCKET E, EXTRA+12 & -5V
POWER SUPPLY LINES ARE REQUIRED, AND TWO TRACKS ON THE P.C.B.

NEED CUTTING.

THE TWO CUTS ARE ON THE REAR
OF THE MPU BOARD IN THE TOP
LEFT HAND CORNER. X’'s MARK
THE SPOTS

(THERE IS NO PROVISION FOR ON-BOARD REGULATORS FOR THESE TWO
EXTRA SUPPLIES).

OF COURSE, THE 2716 EPROM NEEDS NO EXTRA SUPPLY LINES, AND IS THE
DEVICE THAT THE P.C.B. WAS DESIGNED FOR, IT PLUGS STRAIGHT INTO
SOCKET E.

THE CONNECTOR H CARRIES THE ADDRESS BUS, THE DATA BUS, THE
CONTROL BUS, POWER SUPPLY LINES AND THE 16 INPUT/OUTPUT LINES
FROM B2. THIS WILL PLUG INTO A BACKPLANE WHICH TAKES THE BUSSES
TO OTHER ACORN CARDS.

5.5 THE KEYBOARD AND TAPE INTERFACE

AT THE OTHER END OF THE BOARD, CONNECTOR I CARRIES ALL 16 I/O LINES
FROM DEVICE B1, ASWELL ASOV, +5V, 02 & RESET LINES. WITH THE
INTELLIGENT ACORN MONITOR AND THE KEYBOARD BOARD, THE /0O LINES
ARE DEDICATED AS FOLLOWS

B1 PORT B@-7 QUTPUTS SEGMENT DRIVES
AQ-2 OUTPUTS BINARY ENCODED DIGIT DRIVES
A3-5 INPUTS KEYBOARD ROW INPUTS
A6 OUTPUT FROM COMPUTER TO CASSETTE

A7 INPUT FROM CASSETTE TO COMPUTER

—~A COMMENT FOR THOSE INTERESTED: ALTHOUGH THE KEYBOARD ONLY
CONSISTS OF 24 KEYS AT PRESENT, IT IS POSSIBLE, WITH A PRIORITY
ENCODER ON THE ROW INPUTS, TO USE UP TO 56 KEYS. THE DISPLAY
SUBROUTINE WILL COPE CORRECTLY WITH THE UNKNOWN KEYS, EXCEPT
THAT, AT THE POINT, OUTPUT, IT THROWS AWAY A SIGNIFICANT BIT OF
INFORMATION. HOWEVER, THE ACTUAL KEY VALUE HAS BEEN STORED IN
LOCATION @@pF AND SO CAN BE RECOVERED. THE UNKNOWN KEYS WILL NOT
AFFECTTHE MONITOR ITSELF, SINCE AT THE POINT SEARCH MORE ITS OF
INFORMATION IS THROWN AWAY, LEAVING THE MONITOR WITH A CHOICE
OF EIGHT VALUES.

THE SUBROUTINE DISPLAY RUNS THE DISPLAY IN A MULTIPLEXED MANNER,
AT THE SAME TIME STROBING AND DEBOUNCING THE MATRIXED KEYBOARD
ON THE KEYBOARD BOARD. EACH OF THE EIGHT COLUMNS OF THE8 X 3
KEYBOARD IS DRIVEN BY ONE OF THE EIGHT DIGIT DRIVER LINES, THE
THREE ROW LINES ARE CONNECTED TO DEVICE B1, AND THEY ARE PULLED
TO LOGIC ONE BY THE 4K7 RESISTORS. IN CONJUNCTION WITH ITS COLUMN

BEING DRIVEN LOW, A CLOSED KEY PRODUCES A LOW ON ONE OF THE ROW
INPUTS +5V

%},E 4K7

M| G P S L R 1 4

5
2

ALL THE INTERFACE BETWEEN THE MICROPROCESSOR AND THE KEYBOARD
AND DISPLAY IS THUS ACCOMPLISHED BY ONE OCTAL DECODER/DRIVER
AND THREE RESISTORS. THE REST OF THE CIRCUITRY ON THE INTERFACE
BOARD ALLOWS PROGRAMS TO BE RECORDED ON CASSETTE AT THIRTY
BYTES PER SECOND, THE INTERFACE IS SLIGHTLY MORE COMPLICATED
THAN THE SINGLE I.C. AND THREE RESISTORS USED ABOVE, IT HAS TWO
TASKS.

1 CONVERT THE SERIAL STREAM OF INFORMATION PRODUCED BY PUTBYTE
INTO TONES SUITABLE FOR AN UNMODIFIED CASSETTE RECORDER TO
RECORD.THE FREQUENCIES USED ARE 2403.8 HZ FOR A LOGIC ONE AND
12¢1.9 HZ FOR A LOGIC ZERO. THE FREQUENCIES ARE PRODUCED BY
DIVIDING 2, WHICH IS CRYSTAL CONTROLLED AT 1 MHZ, BY 416 OR 832.

1l CONVERT THE PLAYED BACK FREQUENCIES INTO A STREAM OF BINARY
INFORMATION. THE PLAYBACK IS ‘AMPLIFIED’ INTO A SQUARE WAVE, AND
ITS PERIOD IS COMPARED WITH THE PERIOD OF A REFERENCE DIGITAL
MONOSTABLE ON THE CIRCUIT BOARD

BECAUSE OF THE AMPLIFICATION STAGE, THE OUTPUT FROM A TAPE

RECORDER’S 'LINE' OUTPUT, OR THE ‘EAR’' JACK SOCKET, SHOULD PERFORM

SATISFACTORILY EVEN AT MODEST VOLUME LEVEL. HOWEVER THE

COMPUTER OUTPUT IS AT QUITE HIGH LEVEL AND SHOULD BE ATTENUATED

FOR THE TAPE RECORDER. TO PREVENT NOISE PICK-UP THIS SHOULD BE

WITH THE COMPLETE PROCESSOR STATUS RECOVERED. THUS, IF WE FINISH
THE PROGRAM

920D 69 19 ADC #19
B20F 2060 FE JSR RDHEXTD
@212 4CQP4 FF JMP RESTART
(215

AND PRESS R, THE DISPLAYED ANSWER WILL BE 03

6.3 THE SINGLE STEPPING FACILITY

A MORE INTERESTING USE OF THE ROUTINE BREAK AT FFB3 IS IF YOU GENERATE
GENERATE A NMI EVERY OPCODE FETCHED NOT IN THE MONITOR, AS DISCUSSED
DISCUSSED IN THE HARDWARE SECTION THE SYNC PULSE ISSUED DURING AN
OPCODE FETCH IS LESS THAN 1 CYCLE LONG, WHILE NMI REQUIRES AT LEAST 2
CYCLES. A LATCH IS REQUIRED TO STRETCH THE SYNC SIGNAL

Y2 741.574
BC 107
M - Ik /—')ggl_l\lL'\él(ZQI'gllsRNLlNE
D SET ey
PROMENABLE
SIGNAL

SINGLE STEP OPEN'/ 4K7 ov

AND IT ALSO ONLY PROVIDES AN NMI WHEN NOT IN THE MONITOR. BEFORE
EXECUTING A PROGRAM SET THE NMI VECTOR (LOCATIONS 001C & 0@1D) TO
BREAK (FFB3) THE PROGRAM COUNTER RECALCULATION, IN ¢@18, SHOULD
BE 0@. EACH INSTRUCTION EXECUTED CAUSES THE MONITOR TO DISPLAY THE
STATUS OF THE PROCESSOR, PRESSING R CAUSES THE NEXT INSTRUCTION TO
BE EXECUTED. YOU MAY USE THE MONITOR TO ALTER A ,X,Y {LOCATIONS)
@P2A, B & C) OR P (AT STACK POINTER + 1), BEFORE THE NEXT STEP, IT IS
INADVISABLE TO CHANGE PC (STACK POINTER +2 & +3), BUT THIS CAN BE
DONE ASWELL. THE SINGLE STEP EXECUTION CAN BE STOPPED IN TWO WAYS
1 GROUND NMI LINE/GROUND THE SET INPUT OF THE D FLIP-FLOP

1l POINT THE NMI VECTOR AT AN RTI INSTRCTION, SAY THE ONE AT FFID
(EXECUTION OF A PROGRAM WILL BE SLOWED DOWN BY A FACTOR OF 5 OR
SO DUE TO THE PERSISTENT NMI'S.)

AN IMPORTANT NOTE: THE BREAK ROUTINE SETS THE REPEAT LOCATION

TO FF, SO THAT IT, AND THE MONITOR, MAY SAFELY USE THE DISPLAY
ROUTINE. IF YOU NEED TO USE SINGLE SCANS AND BREAKS TO THE BREAK
ROUTINE, SOME INGENUITY WILL BE REQUIRED, OR SOME DEDICATED
BUTTON PUSHING.

NOW THE COMPLETE MONITOR LISTING. THIS ISWRITTEN TO FIT IN THE TWO
512 X 4 PROMS.

AFTER THE ADDRESS 1S SET UP, THEN ANY KEY WILL CHANGE THE STATE
OF IT'S CONTENTS: IF NOT A BREAK, A BREAK IS INSERTED, THE
ORIGINAL DATA IS SAVED IN LOCATION ¢@18. |F A BREAK, THEN THE
CONTENTS OF @018 ARE INSERTED. THE RESULTING STATE OF THE
LOCATION IS DISPLAYED

P. 0200 . @0

WE ARE NOW BACK AT FF@4. BUT t & 4 NOW OPERATE ON THE P ADDRESS.
CONTENTS OF A LOCATION MAY BE CHANGED AS IF THIS WERE M.
PRESSING P TWICE WILL INSERT A BREAKPOINT (ONLY A SINGLE
LOCATION'S BACK-UP COPY 1S RETAINED) AND SEND YOU BACK TO FF(4.
THE M KEY WILL RETURN IT'S MEMORY ADDRESS WHEN PRESSED
NOW THE PROGRAM IS SITTING THERE WITH A BREAK AT 0200. EXECUTION
OF THIS BREAK WILL CAUSE AN IRQ AND CONTROL IS TRANSFERRED TO
THE ADDRESS IN LOCATION G@IE & 801F: FOR DIAGNOSTICS THIS ADDRESS
SHOULD BE FFB3 (THE B3 IN @@IE & THE FF IN 08IE) ALSO . - /¢
THE PROGRAM COUNTER REQUIRES RESETTING AFTER A BREAK. THE
AMOUNT BY WHICH THIS IS DONE, 32, SHOULD BE STORED IN LOCATION @918
NOW EXECUTING THE BREAK CAUSES THE STATUS OF THE PROCESSOR TO
BE DISPLAYED IN THE FOLLOWING FORM

FIRST DISPLAY SET : A] X|Y]P (HEX PAIRS OF DATA IN EACH)
SECOND DISPLAY SET:f PC | SP [(TWO BYTES EACH, SECOND SET DISPLAYED
AFTER ANY KEY IS PRESSED).

THIS PROGRAM

0200 78 SEI —SET INTERRUPT DISABLE

0201 B8 cLv —CLEAR OVERFLOW

0202 18 CLC ~CLEAR CARRY

0203 F8 SED ~SET DECIMAL MODE

0204 A911 LDA#1 1

0206 A2 FF LDX#FF

0208 AG33 LDY #33 33

0209 9A TXS ~INITIALISE STACK

0208 AZ22 LDX#22 22

¢200 00 BRK

020E

CAUSES 1122333C FOR THE FIRST DISPLAY SET AND
@20D01FC

FOR THE SECOND SET.
THE ACTIVE FLAGS ARE THE DECIMAL AND INTERRUPT DISABLE FLAGS,
(THE 2 PART OF THE STATUS REGISTER'S 2C IS AN UNUSED FLAG), THE
PROGRAM WAS STOPPED AT LOCATION @20D WITH AN EMPTY STACK (THREE
BYTES, PCH, PCL, P, WERE AUTOMATICALLY STACKED BY THE BRK
INSTRUCTION). YOU MAY NOW CONTINUE TOWRITE (OR CORRECT) THE
PROGRAM, USING THE MONITOR AS USUAL (BUT AVOID PRESSING THE RESET
KEY SINCE THE STACKED PCH, PCL & PWILL BE DESTROYED) PRESSING THE
R KEY WILLL RETURN YOU TO (02(D¢ TO TRY CONTINUING THE PROGRAM,

DONE IN THE PLUG CONNECTING TO THE RECORDER

% ‘'FROM’ TAPE

=0 GROUND

SCREENED LEAD

BEST RECORDING RESULTS WITH A LEVEL OF ABOUT TWO-THIRDS MAXIMUM
LEVEL. THE VERY CHEAPEST TAPE RECORDERS SOMETIMES USE A DC. ERASE
SYSTEM, AND SUBSTANTIALLY POORER RESULTS MAY OCCUR ON RECORDING
OVER AN ALREADY RECORDED SECTION OF TAPE. HIGH FREQUENCY
RESPONSE IS AT A PREMIUM IN THIS APPLICATION, THE TAPE RECORDER'S
HEADS SHOULD BE CLEANED FREQUENTLY, AND, PREFERABLY,
DEMAGNETISED EVERY'8—10 HOURS. LOW QUALITY TAPES SHOULD BE
AVOIDEDSINCE THEY OFTEN CAUSE VERY FAST BUILD UP OF DIRT ON THE
HEADS. THE SPEED OF THE REPLAYED DATA SHOULD NOT DEVIATE BEYOND
5% OF THE RECORDED SPEED, SO DON'T USE BATTERIES FOR POWER, (OR C12¢
CASSETTES SINCE THE THINNER, HEAVIER TAPE OFTEN GETS STUCK). CLEAN
THE EXPOSED CAPSTAN AND PRESSURE WHEEL WHEN YOU CLEAN THE
HEADS: A HEAD CLEANING TAPE MAY NOT MANAGE TO REMOVE OXIDE
BUILD-UP FROM THE MECHANISM.,

5.6 POWER SUPPLY

THE TWO BOARDS ARE SUPPLIED BY THE 5V REGULATOR ON THE CPU BOARD.
IF ALL THE L.C.S. ARE IN PLACE ON THE CPU BOARD, THEN AT LEAST 600 MA
IS REQUIRED. PROPER REGULATION IS ENSURED BY NEVER LETTING THE
INPUT UNREGULATED SUPPLY DROP BELOW +7V. WHILE THE REGULATOR IS
PERFECTLY HAPPY WITH +27V INPUT, IT WILL NEED TO DISSIPATE 13.2W AND
WILL GET EXTREMELY HOT... AND TURN ITSELF OFF DUE TO THERMAL
OVERLOAD, LOSING YOUR NICE PROGRAM IN THE R.A.M, UNLESS AN
ADDITIONAL HEAT SINK {S USED, +12V SHOULD BE REGARDED AS AN
ABSOLUTE MAXIMUM UNREGULATED INPUT, THE REGULATOR WILL NOT GET
SO HOT ASTO TURN ITSELF OFF, BUT YOU MIGHT RECEIVE ABURN IF YOU
TOUCH IT.

ADDITIONAL HEATSINK

CHAPTER 6: FIRMWARE

6.1 TAPE STORE AND LOAD

IN THE SOFTWARE SECTION WE USED SOME OF THE FUNCTIONS OF THE
ACORN MONITOR TOWRITE AND EXECUTE SOME SIMPLE PROGRAMS WHICH
DEMONSTRATED FEATURES OF THE MICROPROCESSOR AND PROGRAMMING,
THE MONITOR IS MORE POWERFUL THAN DEMONSTRATED IN THAT SECTION,
AND HERE WE'LL EXAMINE |T MORE CLOSELY, AND GIVE A COMPLETE
LISTING OF IT. AFTER THE M, G, * AND { KEYS, THE MOST USEFUL KEYS WILL
PROBABLY BE S AND L. THESE ENABLE YOU TO STORE AND LOAD
PROGRAMS OF ANY SIZE USING CASSETTE TAPE OR A SIMILAR RECORDING
MEDIUM. LET'S ASSUME WE WISH TO CREATE A TAPE VERSION OF THE DUCK-
SHOOT GAME. THISWILL HAVE BEEN ENTERED IN MEMORY FROM ADDRESS,
SAY, 0200 TO ADDRESS $23F INCLUSIVE. AFTER TESTING THAT THE
PROGRAM ACTUALLY DOES WORK, PRESS THE S KEY.

F. XXXX

THE MONITOR IS PROMPTING YOU TO ENTER THE ADDRESS FROM WHICH
YOU WANT TO RECORD. THE DISPLAYED ADDRESS IS EITHER GARBAGE
OR THE LAST END ADDRESS USED. ENTER THE ADDRESS, TERMINATING
WITH ANY COMMAND KEY

F. 0200
- XXXX

THE MONITOR IS NOW PROMPTING YOU TO ENTER THE END ADDRESS. THIS
IS THE ADDRESS OF THE LAST BYTE IN YOUR PROGRAM + 1. THE
DISPLAYED ADDRESS IS EITHER GARBAGE OR THE LAST END ADDRESS
USED. ENTER THE ADDRESS, BUT DON'T TERMINATE IT YET

- 0240

THE SYSTEM IS NOW READY TO SERIALLY OUTPUT THAT SECTION OF
MEMORY. YOU SHOULD RECORD A BRIEF VERBAL DESCRIPTION OF THE
PROGRAM — “DUCKSHOOT"" — AND ALSO THE ADDRESSES (OR ADDRESS OF
START AND LENGTH)} WHICH THE PROGRAM USES. KEEP A LIST OF WHICH
PROGRAMS ARE STORED ON EACH TAPE. NOW CONNECT IN THE COMPUTER
AND START RECORDING. AFTER A FEW SECONDS, PRESS ANY COMMAND
KEY TO TERMINATE THE ADDRESS ENTRY. THE DISPLAY WILL GO BLANK,
WHILE THE PROCESSOR DEVOTES ITSELF TO SENDING THE INFORMATION
TO THE TAPE. WHEN THE DISPLAY

— 0240

REAPPEARS, YOU MAY STOP THE TAPE-RECORDER: THE RECORDING IS
COMPLETE, AND YOU ARE BACK AT FF@4. ANY HEX KEY HERE WILL BRING
BACK THE MONITOR'S DOTS, OR YOU MAY JUST START USING THE
MONITOR. THE RECORDING PROCEEDS AT 39 BYTES PER SECOND, THIS
PROGRAM, AT 68 BYTES (PROGRAM LENGTH + 4 BYTES OF ADDRESS
INFORMATION) TOOK ONLY TWO SECONDS TO RECORD.

TO LOAD A PROGRAM FROM THE TAPE YOU SHOULD BE IN ASITUATION
WHERE MONITOR COMMANDS ARE ACCEPTED, NOT WHERE YOU ARE
ALLOWED ANY KEY TO TERMINATE AN ADDRESS ENTRY. PLAY THE TAPE,
AND, WHEN THE 2403.8 HZ LEADER IS HEARD, PRESS THE L KEY. THE
DISPLAY WILL BE BLANK UNTIL DATA IS ENCOUNTERED ON TAPE, WHEN
EACHBYTE ENTERED WILL BE DISPLAYED AS A SYMBOL ON THE LEFTMOST
DIGIT. WHEN THE LAST BYTE HAS BEEN READ THE PREVIOUS DISPLAY WILL
RETURN — YOU'RE AT FF@4 AGAIN. THE ADDRESSES INTO WHICH THE
PROGRAM IS LOADED WiLL BE THOSE WITHWHICH IT WAS STORED ON TAPE,
BUT YOU MAY WISH TO DELIBERATELY AVOID THIS. JUST USING THE MONITOR,
THE BEST THAT CAN BE DONE IS TO TREAT THE ENTIRE RECORDING AS DATA
AND LOAD ENOUGH OF IT TO FIT BETWEEN TWO ADDRESSES: THE FIRST
FOUR BYTES LOADED WILL THUS BE THE ORIGINAL ADDRESSES THE
PROCEDURE IS

i SET ADDRESSES 0008 & @009 TO THE LOW & HIGH BYTE OF THE ADDRESS
INTO WHICH YOU WISH TO PUT THE FIRST BYTE.

11 SET ADDRESSES 000A & 0098 TO THE LOW & HIGH BYTE OF THE LAST
ADDRESS +1 INTO WHICH YOU WANT THE DATA TO BE LOADED.

{I1SET UP THE GO ADDRESS OF FF8A,START THE PLAYBACK,WHEN YOU
HEAR THE 2403.8 HZ LEADER, PRESS ANY KEY TO GO. LOADING WILL
OCCUR BETWEEN THE ADDRESSES SPECIFIED.

THE ABOVE PROCEDURE MAY NOT BE SATISFACTORY: IT LOADS THE

PROGRAM’'S ADDRESSES AS DATA, AND DESTROYS THE DATA IN REGISTERS

@ AND 1 (A & X AFTER A BREAKPOINT) BETTER METHODS ARE GIVEN IN THE

SYSTEM SECTION OF THE APPLICATION PROGRAMS

THE LAST COMMENT ON LOAD FROM TAPE IS THAT IT IS POSSIBLE TO

CREATE A PROGRAM ON TAPE THAT WILL,WHEN LOADED, SEIZE CONTROL

AND EXECUTE ITSELE THISISIDEAL FOR, SAY, A BASIC INTERPRETER: YOU

JUST HAVE TO LOAD IT, AND IT AUTOMATICALLY SETS ITSELF RUNNING

AND PROMPTS READY. THE IDEA IS TO LOAD THE PROGRAM INTO THE

MONITORS ZERO PAGE REGISTERS, LOADING THE PROGRAM START ADDRESS

INTO GAP AND THE GO KEY (I1) INTO REPEAT. CARE MUST BE TAKEN WHEN

YOU LOAD INTO FAP AND TAP: YOU MUST BE SURE TO LOAD WHAT'S

ALREADY THERE, OR SOMETHING SENSIBLE!

6.2 THE BREAKPOINT AND RESTORE COMMAND

THE FINAL TWO MONITOR FUNCTIONS ARE EMBODIED BY THE KEYS R AND
P. YOU MAY ALREADY HAVE DISCOVERED THAT PRESSING R IS DISASTROUS,
AND THAT P IS LIKE M, BUT WITH A PENCHANT FOR INSERTING @00 INTO THE
ADDRESS SPECIFIED. WITH THESE KEYS YOU ARE EXPECTED TO DEBUG (A
BUG IS ANY SMALL MISTAKE PREVENTING A PROGRAM FROM
FUNCTIONING) YOUR PROGRAMS. THE P KEY ALLOWS YOU TO INSERT THE
BREAK INSTRUCTION ON TOP OF AN INSTRUCTION AT A POINT WHERE YOU
SUSPECT SOMETHING SUSPICIOUS IS HAPPENING, SAY 0200:

P. 0200 .

