
 

IEEE Task P854

Minutes, 12 April 1985

The radix-free floating-point working group of the Microprocessor Standards Subcommittee of the IEEE
Computer Society met from 9:43 a.m. to 5:30 p.m. at the Fairchild Camera and Instrument Corporation
in Palo Alto. Nineteen people attended.

Minutes from 1 March. Change "Aimes" to "Ames" twice in the second paragraph on page 3. Approved
as thus amended.

Several people had not yet received the mailing for the current meeting. Karpinski provided additional
copies for attendees who were so lacking.

Announcements.

P754 is dead; long live 754! P754 passed its final hurdle along with four other draft standards on March
21 and is now an IEEE standard applause“. It will be roughly six months before one will be able to get
official copies of 754 from the IEEE. Meanwhile David Stevenson seems to have disappeared and so is
not readily available for congratulations. (Anybody know how to get in touch with him?) The final draft
is "essentially" P754 Draft 10.1 (cf. IEEE P854/85-2.25).

Kahan is collecting information on 754 implementations. He particularly solicits more information from
companies (non-proprietary -- for purposes of publication).

Reprints of August 1984 Micro article. Cody finally received 540 copies (against a request for 500).
Of these, 200 have gone to Karpinski (against a current backlog of 186 orders to him) and 50 to Bob
Stewart. Cody is retaining 50, and each of the eight other authors is to receive 30 copies. The article
has been reprinted in SIGNUM Newsletter, Vol. 20 No. 1 (January 1985) from the original Micro plates
with an appropriate credit.

Meetings. Triennial IEEE Computer Arithmetic meeting, Champaign-Urbana, June 4-6. SMU Conference
on Computer Arithmetic for Scientific Computation -- preliminary announcement in mailing (IEEE
P854/85-2.22) -- April 26-27. Program by invitation only. Cody has been invited to and will make
presentation on IEEE standards (30 minutes). Final program will be included in next mailing.

Statements made by Kahan for the record (cf. IEEE P854/85-2.24): (1) Anything Kulisch/Miranker
arithmetic can do can be done equally by 754/P854 provided that the extended format is made sufficiently
wide. However, 754/P854 does not make this obligatory. (2) No published theory of computation to date
(including Kulisch/Miranker) is at odds with 754/P854. (3) Kulisch/Miranker theory, on the other hand,
regards exponent overflow as a disaster from which no recovery is possible. 754/P854 deal with excep-
tional computational events including exponent overflow as gracefully as is known how.

Bob Stewart: There are 32 TCs in the IEEE Computer Society; none are related to numerical analysis.
Should there be one? Silence.“ Any volunteers? None.“ Any in favor of idea? Few.“ Alter-
native suggestion (Kahan): Cannot SIGNUM be jointly sponsored by ACM and IEEE? Cody: SIGNUM
has in the past considered approaching SIAM about possible co-sponsorship.

Correspondence.

Further to the correspondence with Kulisch (IEEE P854/85-2.17 and 2.18), a subsequent letter from
Kulisch to Cody (IEEE P854/85-3.5) points out that while extended arithmetic may be sufficient for ac-
cumulating arbitrarily precise inner products, its full capabilities are not necessary, as only extended pre-
cision addition and some mechanism for feeding exact products to it are required. Further, the exponent
range for exact products need not be extended explicitly.



IEEE P854 Minutes, 12 April 1985 -2-

Kahan: There are semantic (software) and architecture (hardware) problems in requiring double length
results or, equivalently, two results from a multiplication. However, if an operation of the form (A*B
- C) can be obtained to the same precision as A, B, and C, life could be ameliorated somewhat. In par-
ticular, this allows easy computation of quotient and square root from addition and multiplication primi-
tives (cf. current Weitek dilemma). Somewhere we need an implementation note that the trailing part of
a product is essential to obtain for reasons including but not limited to support of precise inner products.
How this is done must be left to the implementer; it is the capability that is essential, not the form. A
linguistic problem likewise exists with a superaccumulator, but is somewhat reduced, as is the function.
Whether the consequent reduction in capability is palatable is a matter of taste.

Kahan volunteers to take lead on implementation note covering above to aim at TOMS publication. Cody
to draft acknowledgement to Kulisch mentioning preparation of this note.

Wilkinson correspondence (continued from 15 November 1984 meeting): David Gay to prepare response
on behalf on committee.

Brakefield correspondence (P854/85-2.14 and 2.15) revisited: Gradual underflow succeeds when it does
because rounding error is insignificant compared to previous or subsequent rounding errors. Unfortu-
nately, gradual overflow does not have this property. Cody will issue clarification.

Proposed Revisions to P854.

Ris distributed a second edition of his proposal on rounding modes (P854/85-2.21) which was not con-
sidered at the March meeting (to be included in a future mailing).

Kahan: running suspect code with different rounding modes might be a useful diagnostic tool. If results
turn out same or close, nothing has been established; but if results are substantially different, this can show
where one might look for difficulties. In such a regime, if rounding modes are static, one must recompile.
If source code is not available, only dynamically adjustable modes will do (assuming "black box" code
does not save/set/restore modes). Problems with decimal constant conversion at compile time can be
solved statically by invoking loophole in "should" of last paragraph of section 5.6, so this is a reduced
difficulty. Run-time conversion can always be enforced through an intrinsic function; e.g., "ATOF ('3.7')".

After some discussion, it was proposed, to make the latter explicit, to add to the appendix of recommended
functions and predicates:

"(11). CONV ('X') converts the string 'X' as though at run-time (rather than compile-time) to a floating-
point value in the widest format supported by the implementation, paying due heed to exceptions and the
current rounding direction and precision as specified in Section 5.6." Agreed. Additional wording in
Forward to signal additional function above 754 also to be added.

The consensus on the main proposal was that potential reduction of code portability is too troublesome
to justify increasing the variety of implementation options. Defeated 8-1.

Thomas distributed a set of four proposals (text to be included in the next mailing).

Proposal 1 would make optional the signalling of invalid operation on encountering an unrecognizable
input decimal string.

Consensus: The standard should not single out either high-level languages or hardware. No change from
past view that the strengthening over 754 is for the better. Hence, not adopted.

Proposal 2 would relax the requirement that an input NaN be signalling unless explicitly recognized to
be silent.

The intent of the third to last paragraph in section 5.6 is that implementations which can output quiet NaNs
and recover them on input should do so when possible. When not possible -- for whatever reason -- the
sentence in question requires delivery of a signaling NaN as the safest course. The consensus was that
the sentence read in the context of the paragraph did indeed have meaning and while further help to the
implementer might be appropriate it was not critical. Defeated 7-4.



IEEE P854 Minutes, 12 April 1985 -3-

Proposal 3 would delete the recommendation to use "1/0" for infinity in output.

After some discussion, passed 9-3. Further proposal to make "Inf" an acceptable substitute for "Infinity";
passed without dissent.

Proposal 4 was slightly reworked as follows. Replace (4) in Appendix by: "logb (x) returns the exponent
of x, as though x were represented with infinite range, as a signed integer in the precision of x, except that
logb(NaN) is a NaN, logb(Infinity) is +Infinity, and logb(0) is -Infinity and signals the division by zero
exception. For x nonzero and finite, 1 .LE. abs (scalb (x, -logb (x))) .LT. b. Agreed unanimously.

Wording will also be added to the Forward to warn of slight difference with corresponding function in
754.

Kahan proposed to eliminate the inexact exception in round floating-point to integral value (Section 5.5).
Here inexact serves solely to indicate that the input to the operation was not an integer.

For historical reasons, 754 raises inexact due to non-critical adherence to the original Coonen implemen-
tation guide reinforced by the standard test vectors. The present proposal would thus make P854 directly
opposed to common practice in 754 (in which there is sufficient ambiguity in specification to lead to
honest differences in interpretation of what should be done) on this narrow question, and therefore pre-
cludes the possibility of implementations which conform both to 754 (in its present consensus imple-
mentation) and P854. In earlier cases of ambiguity, the Coonen implementation guide was consulted for
guidance, being roughly the Federalist Papers to the 754 Constitution.

Because inexact is discussed separately in the context of rounding (Section 4) and in the context of ex-
ceptions (Section 7), the question of how to interpret the situation from the text of the standard alone
seems to hinge on which of these discussions is felt to be dominant. A straw poll was taken, and there
turned out to be three camps. One felt that the standard as drafted was unambiguous in specifying that
inexact not be raised. Another felt that the standard as drafted was unambiguous in specifying that inexact
must be raised. The third, and largest, camp felt that the standard was ambiguous (adducing as evidence
the existence of the honestly held opinions of the other two camps) and that having uncovered this am-
biguity it was necessary to make some concrete resolution.

It was understood that all known conforming implementations of 754 signal inexact in this operation and
so a decision to adopt Kahan's proposal as the "right" thing might in consequence make these imple-
mentations suddenly non-conforming to P854. After much individual and collective soul searching on the
matter, Cody closed the discussion and called the question.

Passed 9-4. Sentence to be added "This operation never signals inexact."

Reference to section 5.5 to be added to Forward.

Proposal to further add: "This operation leaves zeros and infinities unchanged." Agreed without dissent.

In the same vein: proposal to add to the second sentence of section 5.3, ", and consequently may signal
inexact." Agreed without dissent.

And again, in section 5.4, "When no other exception arises, this operation signals inexact whenever its
result differs in value from its operand." Agreed without dissent.

And yet again in section 5.5, "Except for not signalling inexact, the rounding shall be as specified ..."
Agreed without dissent.

For scalb: "Over/underflow should be handled in the same way as for decimal string to floating-point
conversion (Section 7.3)" Agreed without dissent.

Interpretation Queries (Ris).

Does the fourth sentence of Section 7 imply that a system with traps implemented shall start in an initial
state with traps masked off? Yes.



IEEE P854 Minutes, 12 April 1985 -4-

Apparently there is a validation suite of programs for Unix (TM) version 5 which requires that the Unix
floating-point trap be entered on deliberately generated overflows and underflows. The default setting for
trapping in Unix is thus the opposite of that required for 754/P854. Is this apparent conflict real? Yes.

Balloting.

The number of voting members stands at 31. Cody will make a revised draft, and send it to the 31 with
a ballot offering alternatives to approve, disapprove, abstain, or not be considered a voting member.
Thirty days will be allowed for return of ballots, which will be out before May 1.

Next Meeting.

July 8 at Apple, Cupertino, 10:00. Jim Thomas to be host.

F. N. Ris


