
A large-scale computer
conferencing system

by D. M. Chess
M. F. Cowlishaw

This paper discusses the relationships between com-
puter-mediated communications and other forms of
communication and describes a particular computer
conferencing system in use within IBM. The system
described is quite large, with over three thousand con-
tributors and over twenty thousand readers. We dis-
cuss the structure of the system, the actions that users
can take, and the ways in which the system is being
used. Neither the definitions presented nor the system
described are intended to be the last, or only, word on
the subject; as computer-mediated communications
and distribution become more and more important in
the business and professional communities, we will
need more ways of thinking about communication sys-
tems and about information distribution in general.

W hen computers were thought of primarily as
devices for manipulating numbers, they were

used mostly by scientists and a few others (such as
census takers). They were also used for applications
that mostly lent themselves to FORTRAN and other
formula-oriented programming languages.

A slightly more sophisticated use of the computer
takes advantage of more of the inherent flexibility of
the machine in record-oriented applications, such as
payroll management, that are generally written in
COBOL and similar languages.

In recent years, the growth of modern languages
(such as REXX), which enable computers to store and
process general information rather than simply num-
bers, has led to a broad-based revolution in computer
usage, and brought computers into areas that have
little use for numerical calculations, but have a crit-
ical need to automate the generation, storage, and

138 CHESS AND COWLISHAW

communication of information. There is no reason
to think that this revolution will not continue.

Even simple electronic mail, the most primitive form
of computer-mediated communication, can have a
huge impact on (for instance) a business or a scien-
tific community. Written notes, instead of taking
several days to cross a country (or a county), may be
received within minutes of being sent. This short
time gives written communication almost the im-
mediacy of a telephone call, while retaining the
advantages of the written medium (written messages
may be more carefully thought out, are easily filed,
and do not require the recipient to be available when
the sender composes the message).

The use of electronic mail is one very small part of
computer-mediated communications. Given the
vast capabilities of the computer for general-purpose
information processing, the use of computers as
communications intermediaries has the potential to
start a communications revolution fully as signifi-
cant for the future of business and industry as was
the first industrial revolution.

This paper describes one particular exploration of
the possibilities of computer-mediated communica-
tions-computer conferencing. It describes an on-

e~ Copyright 1987 by International BusinessMachinesCorporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 26. NO 1. 1987

going project, which takes advantage of only a small
part of the communication potential of the com-
puter. Even so, it has had a major impact on the
way thousands of people get their jobs done. We
hope that this description will be useful to those
already in the field of computer communications,
and also to those many whose lives and work will
soon be touched by it. We also hope to provide
enough information to help those who are actually
designing or building conferencing systems of their
own, in any electronic environment.

Conferencing and communication

Since computer conferencing is a type of communi-
cation, we first briefly discuss how it compares to
other sorts of communication and what new features
it has. We will use the term “computer conferencing”
to refer to all human communication that involves
a computer. Systems that do computer conferencing
are often called “computer-mediated communica-
tions systems,” or “CMCSS.”

Consider the advantages and frustrations of com-
munication by telephone. On the positive side, a
telephone conversation (when the other party is in,
and the other phone is not busy) can be set up in
less than a minute, and business can be conducted
at the full speed of dialogue. On the negative side, it
is impossible to communicate at all by telephone if
the person you are trying to reach is not available at
the time you want to communicate. Anyone who
depends on the telephone to do business knows how
often “telephone tag” occurs, in which each party
leaves message after message for the other, some-
times going weeks before any useful communication
actually occurs. Telephone conversations are also
somewhat ephemeral; unless special arrangements
are made to tape the discussion, any information
exchanged is available only in the memories of the
parties involved.

Mail is a very different form of communication. The
communication rate (one letter in each direction
every few days) is much, much slower than a tele-
phone conversation. Nevertheless, you can write a
letter to someone with the knowledge that the infor-
mation in it will be received, even if the person it is
sent to is not available as you write it or when it is
delivered. And (unless it is destroyed) the letter will
still be available for rereading or for copying to others
long after it is written. We say that the telephone
conversation is “synchronous” because both parties
have to be available at the same time, whereas the

IBM SYSTEMS JOURNAL, VOL 26, NO 1. 1987

letter is “asynchronous” because they do not. The
telephone conversation is relatively fast, whereas the
letter is slow. The letter can be “retained,” and the
telephone conversation typically cannot be retained.

Electronic mail, the simplest form of computer con-
ferencing, offers the advantages of both of these kinds
of communication; an electronic message can cross
a continent in minutes, but if the recipient is not
available when it amves, it will wait. Thus, little time
is lost through delivery delays, and yet there is no
danger of “telephone tag.” If either the sender or the
receiver wishes, an electronic message can be saved
as data for later printing, for sending on to others,
or for use in composing documents or other notes.
In the terms we are defining, electronic mail can be
a fast, asynchronous, retained-information medium.

The telephone, the mail, and electronic mail are all
best suited to contacting a specific individual, when
you know exactly who it is you are trying to reach.
It is often necessary, or desirable, to reach people
you do not know by name or address, people who,
for instance, have specific skills or knowledge that
you need. This function is performed by (among
other things) newspaper want-ad columns. A want-
ad is a message to anyone who may read it, saying
something like “if anyone has this particular thing,
contact me.” Computer conferencing can offer an
improved version of the want-ad; in a suitably de-
signed computer conference, it is possible to ask
questions of a large group of unknown people and
receive an answer within hours or even minutes. It
is also possible to change the content of a question
if it was unclear in the first place and to do other
things that are difficult with newspaper want-ads.
Full computer conferencing, then, as well as offering
fast asynchronous retained communication, can also
offer access to a large pool of people.

In addition to comparing computer conferencing to
more traditional media, it is also good to have ways
to compare different computer conferences to one
another. One way to do this is by looking at the kind
of information that can be transmitted. We usually
think of communication as taking place through
language, by the transmission of words from one
person to another. Another useful ability (which
might be called “information distribution” rather
than communication) is to transfer other types of
information, such as images and computer pro-
grams. This ability is not communication in the
usual sense, since it is not an exchange of words, but
it is something that many computer conferencing
systems can do, and it can be very desirable.

CHESS AND COWLISHAW 139

One last distinction between conferencing systems
involves the environment that the user is in when

As computer usage becomes more
commonplace, users will tend to
develop familiar environments for

their work.

using the system. As computer usage becomes more
commonplace, users of computers will tend to de-
velop familiar environments in which they do most
or all of their computer-related work. Computer-
mediated communications systems may be charac-
terized by whether or not they allow the communi-
cators to remain in their home environment. Sys-
tems that require a direct connection to a particular
computer, for instance, contrast with systems that
may be accessed from a number of computers and
working environments. We will call the former
“closed-environment’’ systems and the latter “open-
environment” systems. This distinction is not always
well-defined, of course. One communicator’s familar
working environment may be foreign ground to
another.

Computer-mediated communications systems of all
these types exist today. The many private “bulletin-
board” systems are typically asynchronous, retained-
information systems that allow distribution of any
sort of digitized information (generally words and
programs) among any number of persons. These
systems often have synchronous components (like
the “CB” systems of CompuServ”), through which
communicators who are accessing the system simul-
taneously may “chat.” These systems are primarily
closed environments; they expect the user to be
working at a terminal directly attached to the host
computer. If other computers are used in the inter-
action, their role is generally minor: serving as ter-
minals or passive recorders of information.

In talking about specific computer conferencing sys-
tems, it will be useful to describe explicitly the enti-
ties, attributes, and actions that make up the system.

By making these categories explicit, we find it easier
to compare different systems and to determine the
actual capabilities of a given system.

To be usefully called an entity, a component of the
system should have attributes and be affected by
actions. A message is an entity in a typical bulletin-
board system, but a single line of a message is not,
since no commands operate on a single line. If there
were a command “display line IZ of message m,” we
would be more likely to speak of lines as individual
entities. The entities that the system recognizes will
affect the way in which the users use and perceive
the information presented. If, for instance, lines of a
message are accessible as entities, users will be likely
to follow this structural lead in composing their
messages, and conventions (such as “put the topic
on line 1”) will tend to arise. User expectations about
extensions to the system will also reflect the current
structure. If lines are not system entities, for instance,
users may be less likely to ask for a command to
copy a given line of a given message into a new
message that is being composed.

The rest of this paper describes a fast asynchronous
retained-information system that may be used to
distribute any digitally encoded information among
any number of persons. It is to a large extent an
“open-environment’’ system in that it runs on a
network of computers and most of its users com-
municate with the system across the network from
their normal working environments.

TOOLS information distribution

History and current usage. The conferencing system
we describe in this paper is called TOOLS. It was
originally conceived and written by Cowlishaw in
198 1 as a relatively simple file server system to allow
secure and controlled shared access to collections of
software tools. When the IBM Personal Computer
(IBM PC) was announced, internal interest in the
product was high enough that a means of widespread
discussion on the topic of the IBM PC was highly
desirable. A modification of TOOLS with some limited
conferencing features was created by researcher Walt
Daniels to perform this function. This “IBMPC” con-
ference grew very rapidly and proved enormously
popular; it is still the largest Toowbased conference
in IBM. Interest in conferencing spread, and more
CMCS features were added to TOOLS. There are cur-
rently 790 TOOLS systems within IBM, at least 100 of
which are used primarily for computer conferencing.
One developing pattern is to have a TOOLS system

IEM SYSTEMS JOURNAL, VOL 26 NO 1. 1987

used mainly for conferencing (for instance, IBMPC
and IBMVM, a conference devoted to the Virtual
Machine/System Product, or VM, operating system)
and another system devoted to the distribution of
related software. (There is a PCTOOLS system corre-
sponding to IBMPC, and a VMTOOLS system corre-
sponding to IBMVM.) TooLs-based conferencing has

The basic entity in a TOOLS system
is the file.

added enormously to the availability of information
in all these areas and boosted the productivity of
thousands of IBM employees.

This section describes the entities in the TOOLS sys-
tem, their attributes, and the actions that users can
perform on them. The implementation of the system
and our experiences with it are discussed later.

Basic TOOLS entities and attributes. The basic en-
tity in a TOOLS system is the jife.’ Each file may
contain a single item (such as documentation for a
program or a report on some topic) or a series of
items, potentially from a number of different con-
tributors.

Each file in a TOOLS system has (in addition to the
unstructured information in the file itself) a name
and a type (each from one to eight characters in
length), an owner (some user of the system), a de-
scription (a short summary of what the file contains),
a “last change time” (which records the time and
date of the last alteration made to the file), a length
(in lines), a size (in kilobytes), and a few other
attributes that we mention later.

As TOOLS was originally designed, a file could be
changed only by its owner (or by a specially privi-
leged user). With this restriction, true conversations
could not occur, since conversation requires at least
two speakers. When TOOLS began to be used for
conferencing, features were added to allow more
than one person to update the same file.

IEM SYSTEMS JOURNAL, VOL 26, NO 1. 1987

It is now possible to specify to TOOLS that files of
certain types (as reflected by the file type attribute)
will consist of a series of items and that any user
satisfying certain criteria should be allowed to add a
new item to the file (an action usually called “ap-
pending”). These files therefore consist of a series of
items making up a discussion among a group of
people on some topic. Such files are often known as
“forum” files (or “forums” or “fora”), and the file
type “FORUM” is often used for this purpose. Each
item in such a file has attributes giving the time and
date it was created, the file to which it belongs, and
the identification of the user who added it. When
TOOLS is used primarily for computer conferencing,
most of the files on the system are of this sort.

When a system accumulates a very large number of
files, it can be difficult to keep their relationships in
mind. This problem is especially difficult when the
underlying operating system restricts the possible set
of file names. For instance, a single program might
consist of several program files and several docu-
mentation and reference files, and if the operating
system allows (for instance) only 16 characters in a
file name, it can be hard to find a set of names that
makes explicit the fact that all the files belong to-
gether. To address this problem, the concept of a
package was added to TOOLS.

A package is a collection of files, one of which (the
“package file”) serves as a set of pointers to the
others, and contains in addition information about
the package itself. Packages are useful, for instance,
for keeping together the elements of a system of
programs, grouping related documents on a single
topic, or showing explicitly that one group of files is
related to another as a prerequisite. For example, on
IBMPC all the papers from the latest internal sympo-
sium on the IBM Personal Computer are grouped as
a package and may all be requested with a single
command. Users may perform some actions on an
entire package without necessarily knowing what
files it contains. When a user requests ownership of
a package file, ownership of the files listed in that
package is automatically requested as well. Packages
may contain pointers to other packages, and a user
requesting a package will also be sent any packages
that it points to. For each file on the system, TOOLS
keeps track of what packages (if any) it belongs to.

Packages provide a means for grouping relatively
small numbers of files that belong together and that
should be treated as a unit for many purposes; this
imposes a fine-granularity organization on the files

in the system. It is also desirable to impose broader
sorts of organization. The disk is the large-scale
organizing concept in TOOLS; a single disk might
contain all the discussions and documentation about
microcomputers, whereas another might contain all
the information about mainframes.

In more detail, a disk is a group of files and packages,
along with history and usage information, logs for
audit purposes, and other associated information.
The term disk comes from the implementation; a
reasonable nonelectronic analogy for the “disk” is a

-

TOOLS itself does not interpret the
data in its files.

single drawer of a filing cabinet. (We will have some-
thing to say later about the dangers of this type of
analogy.) A single TOOLS system may manage one or
many separate disks. Shadowing (which we will de-
scribe later) allows specified disks on one TOOLS
system to be automatically copied to a number of
other systems to make access more convenient for
distant users. Most TOOLS commands apply to a
specific disk on the system being addressed.

TOOLS does not interpret the information contained
in a file, except for those entries that consist of a
series of items. This has important consequences for
the usefulness of TOOLS for nonconferencing infor-
mation distribution. Since there are no requirements
that “subject lines” or other attribute information
actually reside in the file, TOOLS may be used to
retain and distribute programs, digitized images or
audio data, or anything else that the host computer
can store and transmit.

The fact that TOOLS itself does not interpret the data
in its files also means that there is no way to, for
instance, hold a secret-ballot election using only
built-in TOOLS actions. TOOLS does have, however, a
number of “user-exit’’ points, so that a more struc-
tured interpretation of incoming data may be added
without modifying the system itself. The addition of
structure can be helpful in tailoring the system for

142 CHESS AND COWLISHAW

specific tasks and for reducing information overload.
We will have more to say on these topics later.2

The users of a TOOLS system have attributes describ-
ing the actions that they are permitted to perform,
the files that they own, and the files and packages
that they are interested in. As we will describe in
more detail, there is a TOOLS command that allows
users to “subscribe” to a file and automatically re-
ceive any updates that are made to it. For files that
are particularly interesting, this command saves the
user the trouble of manually checking for updates.

As in any system that will be used for a variety of
purposes, there is often a need to control the actions
that users are authorized to perform. Since TOOLS is
intended to be able to handle very large groups of
users, it is possible to control authorization levels for
many users at a time: that is, the person setting up a
TOOLS system may specify (for instance) that all users
shall have a certain privilege level, except that users
at a certain location shall have a different one, and
some specific users shall have still another. The
granularity of control is very fine; for any user, it is
possible to specify precisely the set of actions that
that user should be able to take with regard to each
file type on the disk. In contrast, commonly associ-
ated sets of actions are grouped into convenient
synonyms, so if the system is being used in a typical
way, the authorization list will be small and simple
to maintain. Some uses of the authorization mech-
anism are described later, and details are given in
Appendix A.

Shadows. In a large distributed network, the time it
takes to access data may be strongly affected by
where those data are located. For a user on a network
that spans continents, data actually resident on the
local system may be immediately available, whereas
data on a distant node, although accessible, may take
some time to amve. To address this problem, TOOLS
supports various mechanisms for maintaining local
copies of the data contained in a disk.

These mechanisms are implemented by allowing
some users of the TOOLS system to in fact be other
TOOLS systems. For instance, the system maintains a
list of users to whom are forwarded copies of every
request that causes a change to the files on a partic-
ular disk. This list is commonly used to maintain
“shadows” of particular disks at remote TOOLS loca-
tions; subject to communications delays, the systems
to which the requests are copied can maintain du-
plicates of the data in the master TOOLS system.

IBM SYSTEMS JOURNAL, VOL 26. NO 1, 1987

The status of these shadows may vary. A shadow
may be a passive slave, in which case it blindly
accepts updates from the master but cannot itself
generate updates; it may be a servant, a shadow that
accepts updates from its master but also accepts from
users update requests that will be copied back to the
master (and hence to all the other shadows); or it
might be a peer, a TOOLS system that is the equal of
all its peers-any peer system may accept requests
from users and copy that request to all its peers. A
single TOOLS system may use these linkages in any
combination. The same system can be the peer of
several other systems, pass on copies to passive
slaves, and accept updates from a master that is in
some sense at a higher level in the hierarchy of
systems.

TOOLS does not offer some features that are often
found in closed-environment conferencing systems.
In particular, there is nothing corresponding to a
“notebook” (a collection of data that may be ac-
cessed and modified only by the user whose note-
book it is) or a “personal message” (a piece of data
sent from one user to another and not accessible to
anyone else). Because TOOLS is an open-environment
system, these facilities are already available to the
users in their home computing environments (note-
books as files in the local operating system, and
personal messages as electronic mail via the network
that TOOLS runs on) and need not be resupplied by
the conference.

Basic TOOLS actions. Here we discuss the most
important actions that users of the TOOLS system can
perform. A detailed list of the general user actions is
given in Appendix B.

The first command that a new user might issue to a
TOOLS system is “help.” At the option of the system
maintainer, each disk that a TOOLS system maintains
may have some “help” information associated with
it. The help command returns this information for
each disk that has it, as well as general help infor-
mation for the system as a whole. Disks that should
not be generally visible to the public may be hidden
from the help command by simply not including
any help information for them.

After an interesting disk has been found, either
through the help command or from some other
source, the next command might be “summary.”
For each file in the specified set of files (including

for all files), the summary command returns to
the user the name and type of the file, the identifi-
“* *rr

IBM SYSTEMS JOURNAL, VOL 26, NO 1. 1987

cation of the owner of the file, and a short descrip-
tion, originally entered when the file was created.
Using this information, the user can determine
which files are most likely to be interesting or to
contain the information sought.

To get one of the desirable files just identified, the
user might next use the “get” command, which
simply ships the user a copy of the file or files named.
Options on the command can be used to request
only those items in a file beyond a given date or only
those files in a set that have been updated since a
given date. Local users of the system (described later)
may also be able to access the data in the system
directly, without using any TOOLS commands.

Having identified and read one or more files on the
system, the user may wish to keep up with the file
by being informed automatically of any updates to
it. The TOOLS “subscribe” command may be used to
do this. The “inform” command, related to “sub-
scribe,” may be used to request a note saying that
the file has been changed, rather than a copy of the
change itself, or to request notification of any new
files that are created.

The “create” command is used to create a new file
on a TOOLS disk. The user supplies the file itself and
a short description (used in replying to “summary”
and similar requests). A user who creates a file is
automatically the owner of that file; ownership may
later be transferred to another user with the “new-
own” command. A user creating a package file is
also given ownership of all the files named in the
package (subject, of course, to someone else already
owning a file with that name, and to the user’s
authorization level). Other commands to manipulate
and query file ownership are described in Appendix
B.

Having created a file, the user may make a new
version available with the “replace” command or
delete the file and give up ownership with “erase.”

The owner of a file, and anyone else so authorized,
may add an item to a file with the “append” com-
mand. This command is also used to modify items
already contributed. The “append” command is the
most common method of contributing to TOOLS-
based conferencing systems; the ~ B M P C conference
processes more than 300 append requests in a typical
business day.

These actions are only a sample of the most com-
monly used TOOLS commands; see Appendix B for

CHESS AND COWLISHAW 143

more details. Every command issued is verified be-
fore being carried out. TOOLS matches the user’s

Every file on the disk is contained in
some package.

identification against the authorization lists for the
system and the disk and only carries out the action
if it is possible and permitted.

Some uses of the authorization levels. Appendix A
describes the authorization mechanism in some de-
tail; here we give a few examples of how it can be
used.

The typical “open” conferencing system in IBM is set
up to allow any user with access to the system to
create a new file, to subscribe to files, and to get any
file. In addition, all users are authorized to add items
to files with certain file types (typically including
“FORUM,” “BUGS,” and so forth). This simple au-
thorization structure requires only two lines in the
TOOLS control file.

A typical software repository system might specify
that all users should be allowed to get files, subscribe
to files, and create new package files, but not to
create new nonpackage files not mentioned in any
package file. This specification means that every file
on the disk (except the package files themselves) is
contained in some package, and it is possible to find
out with what package (and therefore what piece of
software) every file is associated.

It is also possible to allow all users to read the
information in the system but to allow only certain
users to add to the information. This could be used
to implement an “official news” system or a reposi-
tory of product documentation.

Some discussions call for a still tighter level of con-
trol. If, for instance, it is necessary to restrict access
to the system to a specific list of users, TOOLS can be
told that, for a particular disk, only specified users
should be able to access the disk at all. Each of the
authorized users may be given any desired level of

144 CHESS AND COWLISHAW

access; some users may be allowed only to read the
information, others only to add to existing files, and
still others to create new files.

In all these cases, one or more users may be given
special privileges, enabling them to perform any
actions on any files on the disk. This procedure is
necessary to allow for maintenance in case of system
problems, and for effective enforcement when a dis-
cussion threatens to stray outside the bounds of the
purpose of the conference. Details of all these privi-
lege levels are given in Appendix A.

Experience with TOOLS

The current implementation. The basic entities and
actions in the TOOLS system could be implemented
in any networked electronic environment. Except
perhaps for the notions of file name and file type,
and some other small details, the structure of the
system is independent of the underlying operating
system and hardware. This section will describe the
current implementation as an example of actual use.

TOOLS is currently implemented in the REXX Ian-
g ~ a g e , ~ running under the Conversational Monitor
System (CMS),4 in an unmodified Virtual Machine/
System Product (VM/SP)’ virtual machine. Each user
in this environment has control of an electronic
workplace (called a “virtual machine”), and com-
munications and data manipulation take place
through this workplace. For historical reasons, the
user’s data file storage area is called a “minidisk,”
the incoming electronic mail box is a “virtual card
reader” (or just “reader”), and the outgoing mail slot
is a “virtual card punch” (or just “punch”). Files that
are in the process of being transmitted from one
user’s workplace to another’s are sometimes referred
to as “punch files.” Some minidisks are available for
access to all users on the same physical computer (or
at the same location) via the “LINK” command. A
user’s primary minidisk is called the “A-disk.”6

Each TOOLS system runs in a single virtual machine.
The virtual machine has one minidisk used for the
system itself and various audit and overhead files,
and one minidisk for each of the TOOLS “disks”
maintained by the system. The “files” in each disk
correspond to CMS files; “items” within a file corre-
spond to sequences of lines, delimited by specially
formatted and easily recognizable separator lines,
which contain the location and user identification of
the contributor and the time and date (in GMT) that
the item was received.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Figure 1 A sample TOOLS configuration, showing how users may access data on a TOOLS disk called BIGCONF
-

LOCAL
USERS

I

LOCAL
USERS

..
. 1 I

I XXKS SYSTEM ACTING
AS MASTER FOR BIGCONF 14 NETWORK I TOOLS SYSTEM ACTING

AS SHADOW OF BIGCONF

-: "

BIGCONF DISK OTHER DISKS

TOOLS systems in this implementation communicate
with their users and with one another through virtual
card readers and card punches. Communication be-
tween virtual machines resident on different com-
puters is accomplished through the Remote Spooling
Communication Services (RSCS)~ networking system,
a store-and-forward system that connects various
types of mainframe computers. Efficient use of the
RSCS network is greatly enhanced by experimental
modifications which allow file fan-out: If a file is sent
simultaneously to a large number of destinations,
only one copy of the file will traverse any single link
in the network. The extremely rapid growth in con-
ferencing that has occurred in recent years would
probably not have been possible without this modi-
fication.

In many cases, local users (users with virtual ma-
chines on the same physical computer as a TOOLS
virtual machine) access the data of the system simply

BIGCONF DISK OTHER DISKS

by LlNKing to the minidisks on which the data reside.
Local users may also communicate with the system
through the virtual reader and punch or (if the TOOLS
system is set up to allow it) through the Inter-User
Communication Vehicle (another way that VM users
and facilities communicate, similar to the reader and
punch in function but different in detail).

A sample TOOLS configuration is shown in Figure 1.
Users at the location where the master TOOLS system
for BIGCONF (1) or one of its shadows (2) resides may
simply LINK to the proper minidisk. Other users may
communicate with the master or a shadow through
the network (3). The master and the shadows also
communicate through the network (4). Any of the
TOOLS systems pictured may also maintain other
disks as masters, slaves, servants, or peers.

The TOOLS system itself consists of one large (about
8000 lines) REXX program, some small subsidiary

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987 CHESS AND COWLISHAW 145

REXX programs, and a small assembler-language pro-
gram that is optionally used to attain higher speeds
for some common requests. Audit trails of requests
received, errors or anomalous conditions in the sys-
tem, and system performance statistics are kept in
three files on the A-disk of the TOOLS machine.
History files and some other overhead files for the
individual disks are kept on the maintained mini-
disks themselves. The authorization information and
other control information are kept in a file on the
A-disk and read into virtual memory when the main
program is invoked.

In a typical TOOLS system, the TOOLS virtual machine
is automatically logged on as part of the system-
startup procedure on the host computer. It reads the
control and authorization information from its A-
disk, links to the disks it will be maintaining to
perform some startup chores, and then waits for
requests to appear in the virtual card reader. When
requests arrive, they are read and logged, the author-
ization of the user is checked against the action
requested, and (if all tests are passed) the action is
performed. If the action is a read request, the re-
quested information (generally files or parts of files)
is returned to the user as a file which will eventually
arrive in the virtual card reader. If the action is a
write request, the requested changes are made to the
data, users subscribing to the changed files are sent
the changes, and the user initiating the request is
sent a confirmation message. For many actions that
alter the content of the data base being maintained,
a backup copy of the data is kept for possible later
use of the REGRESS command.

Given a TOOLS-maintained disk that has shadows at
several locations, there are four basic ways that a
user can access the information in the files on that
disk:

1. If there is a single master location at which the
disk resides, users at that location can access the
information very easily (typically with a single
‘‘link’’ command) and be certain that what they
are seeing is the latest available.

2 . Users not at the master location may access the
latest information by sending GET and LIST re-
quests to the master system or by subscribing to
files that are of interest to them.

3. Users at locations with peer, servant, or slave
shadows of the disk may access the data of the
shadow directly (by linking to the shadow copy).

4. Users at locations where no shadow of the disk
exists may send requests to a nearby shadow.

146 CHESS AND COWLISHAW

The first two methods guarantee that the data ac-
cessed will be current at the time the data are sent.
Because of network delays, data from nonmaster
shadows will not always be completely up to date,
although the difference will not be significant for
typical conferencing applications. The first and third

Users may access a TOOLS virtual
machine through any program that
produces the proper punch files.

methods provide instant, easy access to the infor-
mation, whereas the second and fourth are more
asynchronous. (A read request is issued, and some
time later the requested data appear in the user’s
incoming electronic mail box.)

User interfaces. Since TOOLS communicates through
virtual punch files, users may access a TOOLS virtual
machine through any program they choose, provided
that it can successfully produce the proper punch
files. A REXX program (called “TOOLS EXEC”) is gen-
erally used when communicating with a TOOLS sys-
tem from other systems running CMS. It may either
be called directly by the user or used as a “back end”
by other programs that present the user with a dif-
ferent interface but call TOOLS EXEC to actually send
the request. By centralizing details of the exact syntax
of requests, the position and order of arguments in
request decks, and other minutiae, the TOOLS EXEC
frees interface writers from womes about possible
future changes to these details, since any such
changes will be hidden (as much as possible) within
the TOOLS “back end.”

Interfaces to the TOOLS system have also been written
(or are in the process of being written) for other
operating systems that run on networked machines,
including Multiple Virtual Storage (MVS),’ the Sys-
tem/38,* and workstation operating systems running
on workstations attached to the main network
through local-area networks.

Given the availability of “back-end’’ programs, users
(or user support groups) are free to experiment with

IBM SYSTEMS JOURNAL, VOL 26, NO 1 , 1987

novel user interfaces and to fit the TOOLS user inter-
face into local styles and standards. There are TOOLS
interfaces which are entirely command-line oriented,
others which operate through menus with large
amounts of prompting and “help” information in-
stantly available, and others in which the CMCS ap-
pears to the user as a (relatively) integral part of a
uniform interface system that also includes elec-
tronic mail, document preparation, and other func-
tions. This flexibility is not entirely free, of course.
It is not always possible for one user to instruct
another user (perhaps from another site) on how to
access the system, since the locally implemented
interface methods may be different. The common
back end guarantees a method of last resort, though,
since anyone who knows how to use the TOOLS back
end itself can invoke it directly, regardless of locally
designed interfaces.

The conferencing environment. To give some idea of
the scale of usage that TOOLS is designed to handle,
we will present some experience with the IBMPC
facility (currently managed by Chess). There are 103
“first-level shadows” of the system (shadows that
receive copies of all data from the master system)
and at least 50 “indirect shadows” (shadows that
receive copies from shadows). The master system
handles roughly 2500 requests per business day.

There are upwards of 3500 files on the IBMPC disk,
and recently a second disk has been added to hold
old and “archival” information. On a typical busi-
ness day, there are more than 300 updates to the files
on IBMPC, the large majority of these being APPEND
requests. The total amount of information on IBMPC
is about 90 megabytes. It is difficult to estimate the
number of people who read the information in the
system, but it is more than 20000 (and possibly as
high as 90000; this number is hard to determine).
The number of contributors is over 3500.

Contributors to the data base are from a relatively
wide range of backgrounds. Early in the operation
of the system, before any novice-level interfaces had
been written, the only participants were people with
experience in CMS, who had the ability to deal with
sometimes-fractious systems. They were primarily
programmers and hardware developers. Most of the
information in the system was at a very technical
level. As use of the system has become simpler and
knowledge of it more widespread, the user mix has
become more varied, and contributions now come
from the administrative, sales, and other nontechni-
cal areas.

IBM SYSTEMS JOURNAL, VOL 26. N O 1. 1987

Some of ;he most common contributions io the
discussion, however, include

Appeals for assistance-A user trying to get some
piece of software to work in a slightly odd envi-
ronment, or to make some piece of hardware
behave slightly differently, or just trying to under-
stand some particularly turgid paragraph in a
manual will often contribute a question. A similar
type of question comes from users who need to
accomplish some specific task and are looking for
a program or technique to do it. Such questions
are generally answered within an hour or two, if
the hardware or software concerned is widely used.
Tips and techniques-Often begun in answer to
questions of the first sort, “how to do it” discus-
sions are frequent in the system.
Bug reports and enhancement suggestions-Users
of any software on any computer system will find
things that the system does wrong, or things that
they would rather have it do differently. One com-
mon contribution to the data base is the combined
bug report and “wish list.”
Product information and reviews-General infor-
mation about software or hardware that much of
the community may not have seen is also in-
cluded. IBM announcement letters for products
related to the Personal Computer are placed in the
data base, and hands-on reports are often put out
as well.

Information overload is of major concern in such a
system, and various means of combating it are under
study. An ad hoc group of interested persons has
begun to edit and concentrate the sometimes ram-
bling and chatty FORUMS into more structured tech-
nical notes, which are written by several people,
reviewed for accuracy and correctness by others, and
finally edited by one volunteer. The CMCS is not
currently used for this joint authorship; it would be
desirable to enhance TOOLS or its interfaces to allow
this to be done conveniently.

In the absence of a technical note on a topic, the
search for information is generally reduced to brows-
ing through the (very long) list of file names and
descriptions, looking for likely keywords. Since all
human discussions have a tendency to go off on
tangents, it is not unusual to find the answer to a
question in a place to which simply looking through
names and descriptions would not lead the searcher.
One of the most asked-for enhancements to TOOLS

CHESS AND COWLISHAW 147

is a full-text or keyword search facility, with the
typical data base search (“Pascal or Modula with
performance and analysis”) capabilities. Considering
the unstructured nature of the data, and the fluidity
of the jargon in the personal computer field, there is

Styles of usage vary greatly with the
method of access.

evidence in the literature to suggest that a full-text
search facility would be more likely to lead to a false
sense of security than to do real good.’

Along with the problem of there being too much
data to search, there is a problem of having too much
data with which to keep up. The INFORM and SUB-
SCRIBE requests for remote users and various front-
end programs for users directly linked to IBMPC or
its shadows make it possible to read every word that
is entered. Obviously, the volume of information
available makes this impractical for anyone who has
another job to do; the same volume that makes
IBMPC a rich source of information makes it a poten-
tial source of information overload. Efforts to assess
this overload (which is documented only anecdotally
at the moment) and address it along various lines
(see, for instance, Hiltz and Turroff”) are being
considered. Without a good feeling for the way the
system is actually used, it is hard to choose an
overload-reduction strategy that is likely to be effec-
tive for a large segment of the community. An infor-
mal survey of IBMPC users (conducted by creating an
appendable file on IBMPC asking “How do you use
the system?”) revealed some facts, but a more formal
study will be needed before any conclusions can be
drawn.

Styles ofusuge. Styles of usage vary greatly with the
method of access. Users with a copy of the data base
directly accessible (via LINK) contribute more, seem
to be more confident in their use of the system, and
have an easier time obtaining answers than do users
who access the system via LIST and GET requests,
with a (sometimes substantial) time delay between a
“read” type request and the arrival of the data. The

148 CHESS AND COWLISHAW

ability to subscribe to an appendable file hides this
difference to some extent; whether or not there is a
shadow at the user’s location, information added to
files subscribed to is available very soon after it enters
the data base.

Users also see two distinct types of use of the system:
browsing recent activity to keep up with the field,
thus possibly coming upon interesting information
(the “newsletter” use), and searching the data base
for the answer to some specific question (the “search”
use). The two types of interaction require very dif-
ferent tools (although there are some tools that would
aid in both). Existing front ends seem to serve the
newsletter function best; searching is more difficult
to do. This is because the system can easily find the
most recent items (because it knows the entry times
of everything in the system), but it cannot in general
find items relevant to a particular subject (since it
has no notion of what an item is “about”). One
solution to the search problem is to use the pooled
memories of the entire user community as a search
engine. A user unable to find what he is looking for
can add an item to the file called “ISTHERE FORUM,”
asking if anyone can help out in the search. A typical
item in this file might say “I’m pretty sure I saw an
account of how to . . . but I can’t find it anymore; is
there anyone who remembers where this is?” A
typical response might simply give the file name, file
type, date, and time of the relevant item from some-
one who happens to remember it (or to remember
enough to be able to find it easily).

Sociological aspects. Much has been written on the
sociological aspects of C M C S S , ~ ’ ~ ~ ~ and no doubt more
will be. The sociological data from IBMPC are all
anecdotal. We will present a few informal observa-
tions here, as possible areas for future work.

IBMPC has felt the lack of nonverbal communica-
tion cues common to most text-based communi-
cation. This lack manifests itself as overreaction
to joking comments (that would have been accom-
panied by a disarming smile or a laugh if made in
person or through an audio medium), misunder-
standing of irony, and confusion as to whether a
speaker is serious. The community has adopted
some conventions (also used on some other large
CMCSS) to make up for this lack. For instance, the
symbol “:-)”, interpreted as a smiling face turned
sideways, is used to bracket light or ironic material.
This convention is only as effective as the speakers’
perceptions; in many cases, speakers will not use
the symbol because they do not realize that there
is any danger of misunderstanding.

I B M SYSTEMS a R N A L . VCL 26, NO 1, 1987

Many people present very different personalities
through the CMCS than they do in person. In
particular, some eloquent and voluminous con-
tributors to the system are quiet and introverted
when encountered in person. Despite the fact that
TOOLS does not offer the anonymity of pen names
or “handles,” some people feel much freer to talk
electronically than they do in person. Part of this
may be due to the fact that the CMCS allows
utterances to be proofread and re-examined before
being sent, making it easier to be sure of what one
is saying.
The ability to modify or take back items that one
has contributed has just recently been added to
TOOLS. When it was not available, many users
expressed a desire to have it. The combination of
easy contribution and (relatively) permanent re-
tention of information raises the danger of a hasty
word being on record for a long time. This danger
seems to have caused a good deal of anxiety in the
user community.
“Flaming”13 has been used to describe CMCS users
who get carried away by emotion or enthusiasm
and enter information into the system that they
would probably not have said if the person being
addressed were actually present. It has not been a
common or a serious problem, however, perhaps
because of the more technical subject matter, and
the business setting, of the system.14
There seems to be a strong sense of community
among the most frequent users of IBMPC. Although
many of them have never met (some have proba-
bly never been on the same continent), there is a
feeling that most of the frequent users know one
another and form a reasonably cohesive group
that is willing to help new users. At the same time,
the amount of bickering among the frequent users
is sometimes high, and fewer punches are pulled
in discussions between people who know one an-
other comparatively well. The community also
does a certain amount of “self-policing;” if some-
one is overly hostile, threatens to drag some dis-
cussion off on a wild tangent, or otherwise has a
negative effect on the flow of communication, he
or she will generally receive several (generally one-
to-one, rather than through TOOLS) messages of
admonition. This sense of community is a very
positive factor in the success of the system, and
many users have cited it as one of the best things
about using IBMPC.
Users have cited many other benefits of the con-
ferencing environment; we will mention a few
here. In contrast to what normally goes on during
a telephone conversation, a person answering a

IBM SYSTEMS JOURNAL, VOL 26. NO 1. 1987

question can spend a relatively long time finding
the answer, without keeping the questioner wait-
ing. Unlike what happens with paper or electronic
mail, in conferencing a question asked and an-
swered once can be read by many people in the
same situation, rather than being asked many
times. In general, this sort of computer conferenc-
ing increases the speed, flexibility, and effective-
ness of the communication going on. This area
deserves further study.

Possibilities

With a user set as large as TOOLS has, there are always
some people wanting to use the system in a way that
the current implementation does not quite allow.
Small changes (small in concept, if not in effort
required) are made to TOOLS periodically, to more
accurately tune it to the users’ needs. This section
will describe some larger-scale directions in which
this sort of conferencing might move.

Some of the future of TOOLS conferencing will de-
pend on the way in which its users and developers
think of the system. Although it is very tempting,
and sometimes very useful, to draw analogies be-
tween components of a CMCS and more traditional
parts of the workplace, these analogies can become
limits to thinking rather than aids.15 The analogy of
a TOOLS “disk” to a drawer in a filing cabinet might
be useful for teaching a new user, but if the devel-
opers and users of the system become too comfort-
able with the analogy, they may not notice desirable
enhancements to the system that do not fit in with
it. For instance, there are circumstances in which a
request to access a given file on a given TOOLS disk
might usefully be translated into a request for a file
(probably of the same name and type) on another
disk, or even under another TOOLS virtual machine.
Under the filing-cabinet analogy, this situation
would correspond to some file folder in some drawer
“really” being another folder in another drawer, or
another cabinet. This is not a particularly natural
thing to think of doing with real file folders and
cabinet drawers, and might not occur to a TOOLS
user who was too firmly wedded to the analogy.

Item orientation. Much of the information that
TOOLS maintains is at the level of the file. Since, for
most conferencing purposes, the most significant
entry is the item (one component of an appendable
file), it might be appropriate to maintain more infor-
mation at the item level. A convention has emerged
to make the first line of each item in the form “Re:”

CHESS AND COWLISHAW 149

followed by a statement of the topic of the item. If
the TOOLS software itself knew about (and perhaps
enforced) this convention, requests such as “fetch all
items with the following words in the topic line” or
“display the topics of all new items in this file” could
be implemented (although such requests are also
vulnerable to the earlier comments about the limi-
tations of full-text search). It might also be desirable
to mark an item explicitly as a reply to another item,
so that a particular conversation thread in a busy file
could be easily followed. Given this sort of “item
orientation,”’6 front-end programs could take ad-
vantage of information about individual items (the
fact that the item is a reply, the fact that it refers to
another item or file in a certain way, and so on) to
provide different views of the data for users with
different needs.

Task orientation. Computer-mediated information
distribution has the potential to influence many of
the tasks performed by its users. In addition to the
currently common conferencing and software distri-
bution tasks, TOOLS could be enhanced to support
joint authoring, decision-making, progress reports,
scheduling of face-to-face meetings, and many other
areas. Some of these tasks could be handled with a
special user interface to the existing system, or even
by a clever use of existing interfaces; others might
require modifications to the system in the direction
of new entities, new attributes, or new actions.

One of the virtues of TOOLS is that it is very flexible.
Because it does not impose a structure on the infor-
mation entered, it can be used for general informa-
tion distribution without modification. Whatever
structure is added to the system to support specific
tasks or to help users filter out information overload,
this generality should be preserved.

Conclusion

This paper has presented an example of a large
computer conferencing system currently in opera-
tion. By increasing the efficiency of technical com-
munications, the system has made thousands of
workers more productive and saved many person-
hours of duplicated or needless effort. In a very strong
sense, this kind of conferencing has changed the way
that we do business.

Computer-mediated information distribution will
become more important as it penetrates more fields,
both in the business and the retail world. The users
of the present system cite a large number of benefits,

150 CHESS AND COWLlSHAW

including increased productivity, higher morale,
large time savings, and increases in expertise. Com-
puter-mediated communications is a field that de-
serves a great deal of effort, both in development of
new systems and in studies of existing ones.

Acknowledgments

The authors would like to thank all of the people
who have made technical contributions to the TOOLS
system and IBMPC, including John Alvord, Bob
Cronin, Walt Daniels, Barry Dorfman, Rob Golden,
David Levine, and Louis Puster, among many oth-
ers. We would also like to thank Gerald Waldbaum,
John Alvord, and Gloria Whittico for their unflag-
ging support of IBMPC at the management and ad-
ministrative levels, and all of the TOOLS users for
their participation and encouragement (especially
those who gave us feedback on early drafts of this
paper, using the conferencing system).

Appendix A: Authorization levels

Authorization levels control which users may apply
which actions to which entities. Each “disk” in a
TOOLS system has a set of authorizations; each au-
thorization specifies that some user (or group of
users) has some specific power over some file (or
group of files). Groups of users may be named by
specifying that all users at a given location (regardless
of user identification), or all users with a given user
identification (regardless of location), be given the
authorization. Groups of files may be named by
specifying that all files with a given type attribute be
included in the authorization. The authorization
levels are as follows:

ACCESSER: This “authorization” is in fact negative
in effect. A user given ACCESSER authority with
respect to some class of files is prevented from
executing any actions against those files.
GETTER: Provides read-only access to a group of
files; no changes can be made, and no new files
can be created. The actions SUMMARY, GET, LIST,
QUERY, INFORM, and UNINFORM are the only ones
allowed with GETTER authority.
APPENDER: Allows the user to add items to files
that he or she owns (or has ADDER authority for).
Valid actions for an APPENDER are the same as
those for a GETTER, with the addition of the AP-
PEND request. (Note that APPENDERS may not issue
OWN or CREATE requests; an APPENDER must be
given ownership of some file by a more privileged
user before the APPEND action can be used.)

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

ADDER: Allows adding items to files that are owned
by some other user. This authorization is usually
restricted to a small set of file types (e.g., FORUM
and NOTE) for computer conferencing. The ADDER
authority in itself does not authorize access to a
disk; it only controls the files that can be appended
without the requestor being the owner of the file.
A user with ADDER authority thus needs at least
APPENDER authority as well ifthe ADDER is to have
any effect.
REPLACER: Allows the user to replace files that he
or she already owns, but not to CREATE or OWN
any new ones. As for an APPENDER, the user will
generally have been given ownership of one or
more files by a more privileged user. A REPLACER,
then, may, in addition to valid APPENDER actions,
REPLACE, HIDE, ERASE, NEWOWN, and REGRESS files
that he or she owns.
OWNER: Allows user to OWN and CREATE new files
and change file attributes via the SET action (as
well as all the actions available to a REPLACER).
This is the standard type of user for most appli-
cations.
PACKAGER: A packager has the same privileges as
an OWNER, except that he may only CREATE or
OWN package files. This permits users to be re-
stricted to dealing only with packages. When a
user requests ownership of a package file, owner-
ship of all files listed in the package is implicitly
requested as well. Thus a PACKAGER may end up
with ownership of files of any type, but only if
those files are listed in a package file. This helps
maintain discipline and makes it possible to de-
termine what package any given file belongs to.
PRIV: This class of user may alter any files on the
appropriate disk, whether or not he is the owner
of them. The “real” owner of the files changed is
warned that the change has been made. A PRIV
user may also change authorizations, perform var-
ious “dangerous” housekeeping functions (such as
erasing old backup copies of files), take actions on
behalf of other users, and perform other special
actions relating to the disk.
SYSTEM: This class of user may issue certain system
maintenance commands and is informed auto-
matically if an error is detected in the operation
of the TOOLS system. The SYSTEM authorization is
associated with a TOOLS system, rather than with
a particular disk. Note that SYSTEM class does not
imply any privileges for a particular disk, and so
a PRIV, OWNER, REPLACER (etc.) card that covers
the user may also be required.

A typical set of authorizations for a TOOLS disk used
for computer conferencing might look like this:

IEM SYSTEMS JOURNAL, VOL 26, NO 1 , 1987

PRlV VLTVMl MITCHELL
OWNER * *
ADDER ONLY FORUM NOTE IDEAS
ACCESSER KOSSYSP *

This set gives user MITCHELL at location VLTVMI the
PRIV authorization, gives all users everywhere (the
asterisk means “any”) the power to CREATE and OWN
new files, to alter files that they own, and to add new
items to files with type FORUM, NOTE, or IDEAS,
regardless of ownership. As an exception, no users
at location KOSSYSZ are allowed any access to the disk
at all.

These authorization levels are the ones built into
TOOLS as defaults. A recent experimental enhance-
ment was made to the system to allow owners of
individual TOOLS systems to create new authorization
levels by specifying exactly which actions users in
that class are permitted to perform. For instance, if
a TOOLS system is being used for some sort of com-
petitive bidding, an authorization level of “BIDDER”
might be created, allowing the users so authorized to
APPEND their bids to the bidding files, but not to GET
those files (so that previously entered bids could not
be examined).

Appendix 6: Basic TOOLS actions

There are several classes of actions available to TOOLS
users. For the purposes of this list, we will divide
them into “read,” “write,” and “administrative” ac-
tions (although this distinction is not actually a part
of the system).

The read actions request the TOOLS system to send
some piece of information that it holds to the re-
questing user. They are

GET: Requests that a particular set of files or pack-
ages, whose name and type attributes meet given
criteria, be sent. The user may specify that only
files that have been changed since a certain date
be sent and (for files which consist of many items)
only items since that date.
LIST: Requests that information about a set of files
(specified as for GET) be sent. The list includes the
name, type, size, length, last change time, and
description of each file. Only files that the reques-
ter is authorized to access (through GET) are in-
cluded in the list.
SUMMARY: Similar to LIST, except that the infor-
mation returned includes the name, type, owner,
and description of each file.

CHESS AND COWLlSHAW 151

QUERY: Actually a family of actions, the QUERY
requests allow a user to find out specific informa-
tion about a disk, a file, or the TOOLS system itself,
or to retrieve a list of the files to which he or she
has subscribed.
HELP: Requests system-specific information, set by
the maintainer of the particular TOOLS system.
This information generally includes (for the sys-
tem as a whole, and for each disk managed by it)
at least the name (and user identification and
location) of a person to contact if problems with
the system occur.

The write actions are those that actually alter some
attribute of some entity in the system. These actions
can themselves be usefully split into two classes:
those that change some system-interpreted attribute
of an entity (such as the list of files that a user
subscribes to) and those that actually alter one of the
files the system is maintaining. We will cover the
first class first.

OWN; This requests the TOOLS machine to register
the requesting user as the owner of a file with a
given name and type. It does not actually create
such a file, however (see CREATE below).
NEWOWN; Changes the ownership information for
a given file.
SET; Another family of actions, the SET requests
allow the owner of a file to change the name, type,
or description attribute of a particular file. One
SET request allows a user who is moving to a new
location, or getting a new user identification, to
inform the system of the change; all occurrences
of the old user information are changed to reflect
the change.
INFORM: Requests that the user be informed of
any changes that occur to a set of files. Optionally,
INFORM may be used to “subscribe” to a file by
requesting that a copy of every change to the file
be sent, rather than just a notification of change.
INFORM may also be used to request notification
of the creation of new files whose name and type
meet the criteria. If the user is itself a TOOLS
system, it may request that the actual request that
caused the change be forwarded; this can be used
to maintain a copy of a subset of the data of one
TOOLS system on a remote system (a “partial
shadow”).
UNINFORM; Cancels the effect of a prior INFORM
request.

The next class of write requests actually causes some
change to one or more of the files in the TOOLS

152 CHESS AND COWLISHAW

system. TOOLS is designed with some emphasis on
security. Every effort is made to ensure that the
person requesting a change to a file is in fact author-
ized to make that change, and an audit trail is kept
of every request.

CREATE: Creates a new file on the disk specified.
Except for privileged users, the requestor must
either already be registered as the owner of the
name and type specified, or the name and type
must be unowned. In the latter case, the user is
first given ownership, as for an OWN request.
REPLACE: Replaces an already-existing file on the
specified disk. Again, the requestor must either be
the owner of the file or be a privileged user.
REGRESS: When a REPLACE request is issued against
a file, a backup copy of the file is kept. The REGRESS
command may be used (by the file owner or by a
privileged user) to reinstate the old copy as the
current copy (the one sent on GET requests, for
instance).
APPEND: Requests that the given information be
added as an item to the end of the specified file.
This request may be executed by the file owner,
by a privileged user, or by a user authorized to
add items to files with that type attribute. Another
form of APPEND allows a user to modify an item
already entered. Only the original contributor of
an item (or a privileged user, or the owner of the
file) may modify it, and the item is marked with
the time and date of the modification.
PRUNE: Requests that any items in the specified
file that are older than the specified date be re-
moved. A note is added to the beginning of the
file, indicating how many lines were pruned, and
by whom.
HIDE; Causes the specified file to become tempo-
rarily inaccessible (until the next REGRESS or RE-
PLACE).
ERASE: Erases the specified file (or, if issued for a
package, all files referenced only by that package),
and deletes all system information concerning it
(except for audit trails and the like).

There are various actions, mostly reserved for system
administrators and other privileged users, which are
used to perform various housecleaning and error-
recovery chores. They will not be mentioned in detail
here, but it is worth noting in passing that they are
all similar in form and content to the usual TOOLS
actions and are processed and audited in the same
ways. The way in which a system administrator takes
care of the system is therefore very much like the
way in which a user accesses and contributes to it.

IBM SYSTEMS JOURNAL, VOL 26, NO 1. 1987

Since most administrators are also users, this means David M. Chess IBM Research Division, Thomas J. Watson
that they have one less thing to learn. lt also makes Research Center, P.O. Box 218, Yorktown Heights, New York

the TOOLS system itself simpler and more consistent* Working at first on VM performance and workload management,
10598. Mr. Chess joined IBM in July 198 I at the Research Center.

he received an Outstanding Technical Achievement Award in 1982
for his contribution to the VM/370 Resource Limiter. When the
IBM Personal Computer was announced, he became the first Cited references and notes

1.

2.

3.

4.

5.

6.

I .

8.

9.

IO.

1 1 .

12.

13.

14.

15

16.

The word ‘‘file’’ comes from the operating system on which
TOOLS is currently implemented, but the analogy between a
TOOLS file and (for instance) a file in a filing cabinet holds
quite well.
Since the original writing of this paper, a voting facility has in
fact been added to TOOLS, but the comments about the
flexibility made possible by the user exit points still stand.
M. F. Cowlishaw, The REXX Language, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1985); also, “The design of the REXX
language,” IBM Systems Journal 23, No. 4, 326-335 (1984).
IBM Virtual MachinelSystem Product-CMS U.ser’s Guide,
SC19-6250, IBM Corporation; available through IBM branch
offices.
Virtual Machine/Sysiem Product Introduction, GCI 9-6200,
IBM Corporation; available through IBM branch offices.
This is just a very brief overview of the VM environment,
hopefully sufficient to make the reader comfortable with the
terms that follow; see the references cited for more detailed
information.
P. Dorn, T. Giblin, and K. Zeliff, MVS/System Product
Release 3 Funcfion and Pwfi)rmancc Overvicw, GG22-94 18,
IBM Corporation (January 1981); available through IBM
branch offices.
IBM S.vstem/38-Iniroduction, GC21-7728, IBM Corpora-
tion; available through IBM branch offices.
D. Blair and M. E. Maron, “An evaluation of retrieval effec-
tiveness for a full-text document-retrieval system,” Commu-
nications ($the ACM 28, No. 3, 289 (March 1985).
R. Hiltz and M. Turroff, “Structuring computer-mediated
communications systems to avoid information overload,”
Communications efthe ACM 28, No. 7, 680 (July 1985).
R. Hiltz and B. Kerr, Computc~r-,r”ediated Communications
Svstems: Sfatus and Evaluation, Academic Press, Inc., New
York (1982).
S. Kiesler. J. Sieeel. and T. W. McGuire. “Social psychological

. I . .
aspects of computer-mediated communication,” dmerican
Psychologist 39, No. IO, 1123-1 134 (October 1984).
G. Steele, The Hacker’s Dicfionarv, Harper & Row, New York
(1983).
Conferencing has added some other words to the community’s
vocabulary as well. For instance, “append” is commonly used
as a noun, referring to a single item in an appendable file, as
in “Did you read that append on debugging?”
F. Halasz and T. Moran, “Analogy considered harmful,”
Proceedinzs o fHuman Factors in Computer Systems (1982),
pp. 383-386.
R. A. Flavin. J. D. Williford, and H. Barzilai, “Computer

Personal Computer consultant of the Research Center. He then
joined the Advanced Workstation Projects Group, working on the
prototype that led to the IBM product PC/VM Bond (later receiv-
ing a Research Division Award for the work). After a year spent
as manager of Advanced Workstation Services, setting up the
support structures for workstation users at the Research Center,
Mr. Chess now develops ways to enhance the productivity of those
users and of the workstation support groups through (among other
means) computer conferencing.

Mike Cowlishaw IBM United Kingdom Limited, Sheridan
House, 41-43 Jewry Street, Winchester, Hunts SO23 8RY, Eng-
land. Mr. Cowlishaw joined the IBM United Kingdom Laborato-
ries Limited at Hursley in 1974, after receiving a B.Sc. in electronic
engineering from the University of Birmingham. From then until
1980, he worked on the design of the hardware and software of
display test equipment. At the same time, he pursued various
aspects of the human-machine interface, including implementa-
tion of the Structured Editing Tool (STET, an editor that gives a
treelike structure to programs or documentation), several compi-
lers and assemblers. and the REXX programming language. In
1980, Mr. Cowlishaw was assigned to the IBM Thomas J. Watson
Research Center to work on a text display system with real-time
formatting and on specifications for new facilities for interactive
operating systems. He returned in 1981 to the Hursley laboratory,
where he completed work on REXX. In 1982, he joined the IBM
United Kingdom Scientific Centre to do research on color percep-
tion and the modeling of brain mechanisms. He has recently been
on secondment to the Oxford University Press, where he was
involved with the New Oxford English Dictionary project. He is
now in the IBM United Kingdom Research Projects Department.
Mr. Cowlishaw has received an IBM Invention Achievement
Award and two IBM Outstanding Technical Achievement Awards
for the conception, design, development, support, and marketing
of the REX (former name of REXX) language and for the devel-
opment of LEXX, which is a programmable structured editor.

Reprint Order No. G32 1-529 I .

conferencing data structures in the GRANDiose System,”
IEEE Transactions on ProSessional Communication PC-29,
No. I , 34-44 (March 1986).

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987 CHESS AND COWLISHAW 153

