
A Decimal Floating-point Specification

Michael F. Cowlishaw, Eric M. Schwarz, Ronald M. Smith, Charles F. Webb
IBM UK

P.O. Box 31, Birmingham Rd.
Warwick CV34 5JL. UK

mfc@uk.ibm.com

Abstract

E v e n though decimal ar i thmet ic i s pervasive in fi-
nancial and commercial transactions, computers are
s td l implement ing almost all arithmetic calculations
using binary ar i thmet ic . A s chip real estate becomes
cheaper it i s becoming likely tha t more computer m a n -
ufacturers will provide processors wi th decimal arith-
me t i c engines. Programming languages and databases
are expanding the decimal data types available whale
there has been little change in the base hardware. As
a result, each language and application i s defining a
different ar i thmet ic and f e w have considered the e f i -
ciency of hardware implementa t ions when sett ing re-
quirements.

In th is paper, we propose a decimal f o r m a t which
mee t s the requirements of existing standards for deci-
m a l arithmetic and as e f i c i en t f o r hardware implemen-
ta t ion . W e propose th i s specification in the hope tha t
designers will consider providing decimal ar i thmet ic in
fu ture microprocessors and tha t f u ture decimal software
specifications will consider hardware efficiencies.

1. Introduction

People habitually perform arithmetic in base 10.
When calculations are moved to computers there is
usually a loss in translating decimal fractions to a
binary representation. Common decimal values such
as 0.1 can be represented exactly in decimal but can
only be approximated in a binary floating-point for-
mat. Traditionally, financial transactions are therefore
performed in a scaled binary or decimal integer for-
mat. Both of these formats are fixed point and so,
even though they avoid fraction approximation, they
are severely limited in the range of numbers they can
represent. Further, in many applications, such as the
calculation of a monthly mortgage payment, round-

0-769s-I 150-3/01 $10.00 0 2001 IEEE
147

IBM Server Division
2455 South Rd., MS:P310

Poughkeepsie, NY 12601 USA
eschwarz@us.ibm.com

ing is required. In the fixed point formats, rounding
must be explicitly applied in software rather than be-
ing provided by the hardware. To address these and
other limitations, we propose implementing a decimal
floating-point format. But what should this format be?
This paper discusses the issues of defining a decimal
floating-point format.

First, we consider the goals of the specification. It
must be compliant with standards already in place.
One standard we consider is the ANSI X3.274-1996
(Programming Language REXX) [l]. This standard
contains a definition of an integrated floating-point and
integer decimal arithmetic which avoids the need for
two distinct data types and representations. The other
relevant standard is the ANSI/IEEE 854-1987 (Radix-
Independent Floating-point Arithmetic) [a]. The IEEE
754 standard [3] is a binary standard which also
meets this radix-independent standard. The radix-
independent standard gives us guidelines for formats
and exponent ranges that need to be considered and
specifically describes requirements for base 10 floating
point.

A floating-point format must also permit efficient
implementation. One of the difficulties with decimal
arithmetic is that it is less efficient than binary arith-
metic. Representations take up more memory and exe-
cution time of an operation is inherently longer. How-
ever, if the data is already stored in memory in a dec-
imal format and conversions between decimal and bi-
nary formats are costly, then it can be more efficient
to carry out computations directly in decimal. Fur-
ther, if the chosen format requires very little hardware
to support then it is likely that future microproces-
sors would implement it in hardware, just as most im-
plement binary floating-point arithmetic today. From
a financial and business software standpoint, decimal
floating-point hardware is as attractive as a graphics
engine is attractive to a games developer.

Other considerations in developing a specification

mailto:mfc@uk.ibm.com
mailto:eschwarz@us.ibm.com

Language
c & c++

COBOL

Java
C#

os /400 CL
PL/I

PSM
Rexx
RPG

Platform
S/390
AS1400
Others
All
All
All
AS/4000
S/390
AS1400
Others
All
All
AS1400

Support
Fixed
Fixed
Fixed
Fixed
Float
Floating
Fixed
Fixed
Fixed
Fixed
Fixed
Floating
Fixed

Precision
31
31
31-38
31
28
infinite
15
15
15
31
31
infinite
30

Comments
C only
C only
In various libraries
32 digit Floating proposed

Using IBM BigDecimal class; java.math is fixed point
Scale <= 9
The FLOAT Decimal data type is actually binary

Implemented via translation to C

Scale <= 9

Table 1. Software and Platforms Implementing Decimal Arithmetic

are that it should be efficient for reading and storing
decimal data in databases. Decimal data are usually
stored in Binary Coded Decimal (BCD) notation. Typ-
ical decimal data are fixed point with up to 20 dig-
its of precision, including up to 10 fractional digits.
There needs to be efficiency in reading the data out
of a database, operating on it, scaling and rounding
it, and then storing the data back into the database
with a fixed point notation. These requirements favor
a BCD format.

A further constraint on a specification is the need to
allow for future expansion of the notation. An architec-
ture or format should be robust enough to grow with
future changing needs. One possible mechanism could
be through the use of special values. There needs to be
enough room in the format to support infinities, Not-a-
Number (NaN) values, and both positive and negative
zeros. In the future there might be additional values,
such as subnormal numbers, considered too.

In summary, the goals of the specification are:

1. It should allow efficient hardware or software im-
plementation of decimal floating-point

2. It should support numbers to be used for the
floating-point and integer decimal arithmetic de-
fined in ANSI X3.274-1996 (Programming Lan-
guage REXX)

3. It should support numbers and values to be
used for the floating-point arithmetic defined
in ANSI/IEEE 854-1987 (Radix-Independent
Floating-point Arithmetic)

4. It should allow efficient use of existing data in
databases

5. It should allow for future expansion.

The remainder of this paper discusses a specifica-
tion for decimal floating-point data types which best
meets these goals and fits within appropriate lengths.
Existing hardware architectures suggest that represen-
tations be 32, 64,80, or 128 bits in length, and these are
convenient for software, too. It is proposed that only
64 and 128 bit representations be defined a t this time,
forming the single and double formats as described in
the IEEE 854 standard. Some prior work by Johnstone
and Petry [4] showed a 32 bit format but this length
does not meet most software requirements. Hull [5]
suggests a variable precision format but this does not
map easily to hardware implementations. Note that
the 854 standard requires a single precision be defined
and recommends that there should be an extended pre-
cision. Double precision satisfies the requirements of
single-extended precision.

Software requirements are first discussed, followed
by the overall decimal format, which is similar to that
described by Ris[G]. These are followed by discussion
on the efficiency and requirements for each part of the
format, including the representation of the integer, ex-
ponent, and special values, the ordering of parts, and
the length of the exponents. Finally, complete formats
will be described.

2. Software Requirements

Table 1 shows a list of several common languages
which define decimal arithmetic (sometimes using li-
braries). Also listed is the support that is provided on
a given platform. The IBM S/390 (2-Series) platform
has 31 digit decimal integer arithmetic hardware and
this is used by many of the languages including C and
COBOL. Java and REXX both provide floating-point

148

decimal representation with an unlimited number of
digits. For other languages, the required support is ap-
proximately 31 or 32 decimal digits. There are some
instances of 38 digit support in both languages and
databases. Hence, the maximum requirement in prac-
tice appears to be 38 digits, although 31 or 32 digits
meets the needs of almost all real applications.

3. Decimal Arithmetic Specification

There has already been work in defining a standard
decimal floating-point arithmetic specification [7, 81.
These documents define a set of operations and rules,
but do not define a concrete representation of numbers.
The present study discusses the choice of representa-
tion.

These other decimal arithmetic specifications [7, 81,
however, detail many useful aspects such as the oper-
ations, formats, and rounding modes that need to be
supported to be useful for multiple languages and ap-
plications. The core operations needed are Add, Sub-
tract, Plus, Minus, Multiply, Divide, Power, Divide-
Integer, Remainder, and Compare. Several exponential
formats may need to be provided, including scientific
and engineering notation, but these can be supported
by a single machine representation. Rounding modes of
round-half-up, round- half-even, round-ceiling, round-
down, and round-floor are required by one or other of
the existing standards. Rounding is applied when the
input operands or a result are too long, as set by a
maximum precision control.

There are no requirements forced on the machine
representation from these decimal arithmetic specifica-
tions, other than certain limits and the need to distin-
guish integer values. However, a decimal floating-point
number is assumed to consist of a sign, an integer (the
specification assumes no maximum size), and an expo-
nent which indicates a power of ten. The numerical
value of a number is described by the following:

The next sections describe the choice of the machine
(concrete) representations for each part of the format.

4. Integer Representation

The significand of the decimal floating-point nota-
tion has its radix point to right of all digits and is con-
sidered to be an integer. The representation format of
the integer has a large effect on the implementation.
The integer can be chosen to be identical in format to

the data in memory, which are typically in BCD for-
mat, or it could be a more compact format. If it is
more compact then a transformation step is required
to move data from memory into the internal format.
Other effects that are important are that overflows or
rounding precision boundaries are more easily spotted
if the format allows easy identification of decimal digit
boundaries. Similarly, carries can easily be detected
and renormalization of the representation is made eas-
ier if decimal digit boundaries are preserved. On the
other hand, decimal adders are slightly slower than bi-
nary adders and more complex operations are corre-
spondingly slower, too. Therefore, the integer format
must be picked carefully.

The three most interesting formats for the integer
are: 1) Binary format , 2) Binary Coded Decimal for-
mat (BCD, 4 bits per digit), 3) Compressed BCD for-
mat.

Binary representation is the most compact form and
allows very fast multiplications and divisions. In this
format, additions and subtractions which require shift-
ing are slow, and rounding and normalization can be
difficult. Johnstone and Petry [4] chose this type of
format and they show that there are complexities in
decimal base scaling which requires division or multi-
plications by 10, as well as significand threshold de-
tection. Also, data are typically stored in memory in
BCD format and therefore would require conversion
into the binary format. Binary format also requires a
costly conversion in order to provide input or results as
character strings. For these reasons, it is not the best
choice.

The second possibility is BCD (4 bits per digit).
This format eliminates the cost of the conversion of the
integer data when loading an operand from memory. It
is also easy to perform rounding and normalization of
an intermediate result, and conversions to and from
strings. It is slightly slower than the binary represen-
tation for unshifted additions and subtractions and is
moderately slower for divisions and multiplications. It
is also a wasteful notation since it only uses 62.5% of
the representation space. This wastage can be a criti-
cal factor in determining the format since it determines
how many digits can be represented within the length
constraints, such as a 64 bit or 128 bit maximum.

The third, Compressed BCD, format is between a
BCD representation and a binary representation. To
convert between a large binary and a BCD number is
time consuming and requires an iterative process of di-
vision by powers of ten. Alternative encodings, such
as Chen-Ho [9] encoding, can be much faster. This en-
coding puts 3 decimal BCD digits into 10 binary bits
which is significantly more efficient than BCD encod-

149

ing which would require 12 bits. It is assumed that
the internal representation in the hardware would still
be BCD notation and there would be a transformation
step (requiring only simple boolean logic) to and from
the encoded format. Compressed BCD format, there-
fore, has the advantages of BCD format while encoding
more digits into the same space, a t the cost of an extra
transformation step. From the range of possibilities for
compressed BCD formats the most attractive compres-
sion ratios appear t o be 3 BCD digits to 10 bits and 2
BCD digits to 7 bits, so these two encodings are consid-
ered. We have devised an improved Chen-Ho encoding
which allows for 7-bit encodings which are a subset of
the 10-bit encodings.

Many other encodings have been used in the past, in-
cluding Bi-quinary, Gray, excess-3, 2-of-5, 1-of-10, and
others. These encodings do not offer compelling ad-
vantages for modern hardware.

To summarize, there is an advantage in the binary
representation for pure processing power but there are
significant costs in creating a rounded floating-point
decimal result and other conversions. Therefore, a
BCD format has a distinct advantage for ease of com-
putation. However, 4 bits per digits is inefficient and
so the compressed BCD encoding methods should be
considered since they provide more decimal digits with
very little extra cost.

5. Exponent Representation

There is a different set of requirements for the repre-
sentation of the exponent. For the exponent, updates
due to normalization or shifting the integer result in
simple additions to the exponent. Also, overflows are
less timing critical in the exponent calculation than for
the integer. Therefore, decimal digit boundaries are
less important for the exponent and a binary format
is acceptable. Other concerns in representing the ex-
ponent are that , in typical binary floating-point units,
determining the relative magnitude difference of the
exponents is timing critical for floating-point addition.
Hence, a format that allows quick comparisons of ex-
ponents is preferred.

Three representations are considered for the expo-
nent: 1) Binary twos-complement, 2) Binary unsigned
with bias, and 3) Binary Coded Decimal (BCD).

A binary twos-complement exponent without a bias
is simple and allows a large range in a given amount of
storage. This type of format allows a fast processing
speed since binary adders are slightly faster than BCD
adders. There is a slight disadvantage that a BCD rep-
resentation in memory would need to be converted to
a binary number but the range of exponents is usually

much smaller than the range of the integer.
A binary exponent with a bias has similar advan-

tages to binary twos-complement. This format is sim-
ilar to binary floating-point exponent representation.
One reasons why the IEEE 754 binary floating-point
standard [3] chose this format was that it is easy to
compare relative magnitudes of unsigned binary num-
bers. This type of format has the disadvantage that
bias offsets have to be applied during arithmetic oper-
ations (e.g., Product Exponent = A exponent + B ex-
ponent - Bias). This complicates the exponent dataflow
slightly.

BCD format allows the simplest conversion from
memory and string formats. However, it slightly more
difficult and slower for hardware to handle arithmetic
computations.

We favor the binary unsigned representation with a
bias since it is very similar to, and can even be the same
as, the IEEE 754 binary floating-point format. Note
that this exponent raises a power of 10 even though it
is encoded in binary. Binary floating-point designers
have perfected implementations of exponent dataflows
with this type of format and therefore it should not
present any new difficulties.

6. Special Values

Special values such as infinity and Not-a-Number
(NaN) need to be representable in the machine format.
There are several ways the format can allow this; the
choice depends on the exponent format and the use of
bits in the rest of the format. Two solutions are 1)
using reserved exponent values, and 2) using separate
bits in the format.

Using reserved exponent values is possible since
there will always be invalid bit formations of the ex-
ponent. If the exponent were represented as a BCD
format then invalid bit combinations could be used.
Alternatively, if the exponent is in a binary format, it
is always possible to reserve exponent values near the
end of the range. In particular, if the exponent is lim-
ited to a decimal digit range (e.g., -99 to $99) a number
of binary values outside this range will available.

Using a separate bit of the format would make it
easier to detect a special number but it is inefficient
to dedicate a bit of the format for this sole purpose.
Therefore, we prefer representing special values by us-
ing reserved exponent values.

7. Ordering

The ordering of the sign, exponent, and integer must
We prefer having the sign, then the be determined.

150

Precision (digits) 10 11 12 13
required Emax 26 28 31 33
preferred Emax 51 56 61 66
double Emax 415 455 495 535

Table 2. Requirements for Exponent Range

14 ... 24 25 26 27 28 29
36 ... 61 63 66 68 71 73
71 ... 121 126 131 136 141 146
575

exponent, and then the integer, similar to the IEEE 754
representations. In software, however, it is common
to place the exponent after the sign and integer (for
example, 12.33+3). We prefer the sign and exponent
on the left side to give them higher precedence than the
integer, to simplify reuse of IEEE 754 circuitry, and
also to keep the integer justified to one end to make
conversion of memory data easier.

8. Length of Exponent

The exponent representation is assumed to be bi-
nary unsigned with a bias and it is also assumed that
the two formats have total lengths of 64 bit and 128 bit.
A length for the exponent field that is both reasonable
and meets the requirements of the IEEE 854 standard
must be determined. The IEEE 754 standard devotes
11 bits of the 64 bit format and suggests at least 15
bits for a double extended format. These lengths turn
out to be good choices for decimal exponents too. An
11 bit exponent gives a range of -1024 through $1023
which for decimal exponents comfortably represents 3
digits (-999 through $999). Similarly, a 15 bit expo-
nent yields a decimal range of 4 decimal digits (-9999
through $9999) with little waste.

The IEEE 854 standard requires that the exponent
range (Emax - Emin) be greater than 5 times the max-
imum precision in digits, and recommends that it be
greater than 10 times the precision. This gives the
minimum values of Emax shown in the second and
third rows of Table 2. Plausible single precisions are
shown to the left of the table, plausible double preci-
sions on the right. The bottom row in the table shows,
for each of the plausible single precisions, the recom-
mended minimum Emax for double precision. This
must be greater than or equal to 8 times the Emax
for single precision, plus 7.

It is apparent from the table that if the latter con-
straint is satisfied then the preferred Emax for double
precision will also be satisfied.

IEEE 854 recommends that , for base 10 represen-
tations, the minimum exponent Emin should have the
same absolute value as the maximum exponent Emax.
That is, Emin = -Emax. Balancing the range in this

way minimizes overflows and underflows when the in-
verse of a number is calculated.

Since the representation comprises an integer and
exponent (instead of a fraction and an exponent), the
maximum exponent in the representation must be re-
duced so that the effective exponent range is balanced.
For example, if the integer were 13 digits and the ex-
ponent 3 digits (-999 through $999) then the range
of positive numbers would be from 1E-999 through
9.999999999999E+1011, which is unbalanced.

Instead, the maximum exponent in the representa-
tion should be reduced by D-1 (where D is the number
of digits in the integer).

For this example the allowed range in the represen-
tation should therefore be -999 through +987, lead-
ing to a balanced range of numbers with a guaranteed
maximum exponent length when converted to charac-
ter form. That is, positive numbers would range from
13-999 through 9.9999999999993+999.

Implementations of IEEE 754 use the following splits
(precision is fraction bits + 1):

Binary bits Decimal (approx)

15 E+4931
34 E+4931

9. Proposed Format

The exponent range and format have been deter-
mined for the two formats: the exponent is binary un-
signed with a bias and is 11 bits for the 64 bit for-
mat and 15 bits for the 128 bit format. This leaves 52
bits and 112 bits for the integer. The integer could be
BCD or a compressed BCD format. Table 3 shows the
number of digits possible for the different lengths and
encoding formats. In parentheses is the number of un-
used bits in the encoding since 7 and 10 do not divide
evenly into 52 and 112 bits. These unused bits could be
left for future expansion and are probably best placed
between the exponent and integer since this leaves the
integer right-aligned. The BCD (4 bits per digit) for-
mat can only get a precision of 28 digits which is three

151

I BCD I 7:2 I 10:3 I binarv
Single (52 bits)
Double (112 bits)

13 digits (0) 14 digits (3) 15 digits (2) 15 digits (2)
28 digits (0) 32 digits (0) 33 digits (2) 33 digits (2)

Table 3. Number of Decimal Digits for Different Integer Encodings

or four digits fewer than are needed by many languages.
Therefore, it would appear that a compressed BCD for-
mat is needed. Both provide 32 or more digits which is
acceptable - but not the 38 digit notation of the most
demanding software requirements.

Either of the compression formats are reasonable
and we suggest that either one could be used. Note
that they are easy to implement, as detailed in the ap-
pendix. Since both are easy to implement 'we slightly
favor the one with greater compression, the 10:3 com-
pressed BCD format. This also leaves the same number
of bits unused for both lengths.

The proposed format is summarized in Table 4.

Analyzing the exponent representation further, the
range of exponents should be -999 to $985 for single
precision and -9999 to $9967 for double precision. This
creates a range of values for single precision and double
precision as shown in Table 5. The bias is chosen to
be the same as IEEE 754 double and quad precision
with 1023 and 16383. Special values could be assigned
outside the exponent range, with infinity perhaps equal
to the maximum exponent (2047 or 32767), quiet NaN
at the maximum exponent minus 1, and signaling NaN
at the maximum exponent minus 2. It is also suggested
that the minimumexponent value (0) be reserved as an
indication of an uninitialized number.

10. Decimal Floating-Point Unit Com-
monality

If both the proposed decimal floating-point format
were implemented in a DFPU (decimal floating-point
unit) and the IEEE 754 standard in a BFPU (binary
floating-point unit) on a microprocessor, there is some
commonality between these units. The formats are
very similar so the input multiplexors could be shared
which separate the data into sign, exponent, and sig-
nificand. The exponent dataflow could reuse some of
the adders though this is only a small area compared
to the significand. And the significand probably can
not use common hardware since the arithmetic is on a
BCD notation versus a binary notation. Therefore, it

may be best to have separate dataflows for the DFPU
versus the BFPU. Though, the register file could be
common. It is probable that decimal operations are
clustered and the floating-point register file would be
unused a t this time. Load and Store instructions could
be common between the two formats. This is akin
to S390 architecture [lo] not defining separate loads
and stores for binary floating point versus hexadecimal
floating point format. Thus, there are some savings
possible. More commonality is possible if the signif-
icand were in a binary format, but this creates more
complexities in scaling and thresholds than it is worth
in area savings. As section 4 states it is also beneficial
to remain in BCD notation rather than going through
conversions on every load and store.

There is also a possibility of commonality of the
DFPU with the fixed-point unit in microprocessors
which implement decimal arithmetic. The IBM 8-

Series formerly the S/390 line of computers contains
a 64-bit or 16-digit decimal adder on the current e900
microprocessor [ll]. This decimal adder is d,ouble the
size of the previous generation processors due to in-
creased demand in decimal performance.

11. Conclusion

We have presented arguments for a machine repre-
sentation of decimal floating-point numbers. The pro-
posed formats provide for precisions of up to 33 decimal
digits with exponents of up to 4 decimal digits. The
two formats are compact and efficient, and occupy ei-
ther 8 or 16 bytes. We were able to exceed 31 digits of
precision by using a BCD compression technique which
can be expanded in hardware with a couple of logic lev-
els or in software by simple table lookup.

We propose this format specification in order to en-
courage microprocessor designers to implement it or a
similar format. The proposed format is very similar to
the IEEE 754 binary floating-point format which has
been implemented in almost all microprocessors. There
are still some unspecified details of the format which
could be adjusted, such as the exact representation of
special values. We hope to work together with other
companies to specify a complete and common format.

We also detailed the reasons for the encodings of

152

Sign (1 bit)
Sign (1 bit)

Exponent (11 bit, unsigned binary with bias)
Exponent (15 bit, unsigned binary with bias)

Table 4. Proposed Decimal Floating-point Formats

Integer (52 bits : 15 digits (Compressed BCD 10:3))
Integer (112 bits : 33 digits (Compressed BCD 10:3))

I Single Precision I Double Precision
I - 9 . 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Q ~ ~ 9 9 9 9 9 ~ ~ 9 9 9 9 E + ~ ~ 9 ~ Maximum Negative 1 -9.99999999999999ES999

Minimum Negative
Minimum Positive
Maximum Positive

-1.00000000000000E-999 -1.00000000000000000OOOOOOOOOOOOOOOE-9999
+ 1.0000 00000 00000E-99 9
+9.99999999999999E+999 +9.99999999999999999999999999999999E+9999

+ 1 .OOOOOO 000 00 000 00 0 00 00 0 0000 00 00 0 OE-9 999

Table 5. Decimal Floating-point Format Range

each field in the format and also suggest reasonable
limits for each format. This is to encourage language
standards committees to consider hardware limitations
when creating their specifications so they can avoid
creating requirements that exceed the likely hardware
capabilities.

References

[l] “Programming Language - REXX (X3.274-1996),”
The American National Standard, New York, 1996.

[2] “IEEE standard for radix-independent floating-point
arithmetic, ANSI/IEEE Std 854-1987,” The Institute
of Electrical and Electronic Engineers, Inc., New York,
1987.

[3] “IEEE standard for binary floating-point arithmetic,
ANSIIIEEE Std 754-1985,” The Institute of Electrical
and Electronic Engineers, Inc., New York, Aug. 1985.

[4] P. Johnstone and F. Petry. “Higher radix floating point
representations,” In Proc. of Ninth Symp. on Comput.
Arith., pages 128-135, Santa Monica, CA, Sep. 1989.

[5] T. Hull, M. Cohen, and C. Hall. “Specifications for
a variable-precision arithmetic coprocessor,” In Proc.
of Tenth Symp. on Comput. Arith., pages 127-131,
Grenoble, France, June 1991.

[6] F. Ris. “A unified decimal floating-point architecture
for the support of high-level languages,” IBM Research
Report RC 6203 (#26651), Sep. 1976.

[7] M. Cowlishaw. “Standard Decimal Arithmetic Specifi-
cation,” http://www2.hursley.ibm.com/ decimal/ dec-
spec.htm1, Aug. 2000.

“Standard Decimal Arithmetic Ex-
tended Specification,” http://www2.hursley.ibm.com/
decimal/ decext.htm1, Aug. 2000.

“Storage-Efficient Repre-
sentation of Decimal Data,” CACM, 18(1):49-52, Jan.
1975.

[lo] “Enterprise Systems Architecture/390 Principles of
Operation,” Order No. SA22-7201-5, available through
IBM branch offices, Sept 1998.

[8] M. Cowlishaw.

191 T. C. Chen and I. T. Ho.

[l l] B. Curran et al. “A 1.lGHz first 64b generation z900
In ISSCC Digest of Technical Papers, microcessor,”

pages 238-239, Feb. 2001.

12. Appendix: Chen-Ho Implementation

Traditionally, n decimal digits are represented by 4n
bits in computers. However, as Chen and Ho observed,
two BCD digits can be compressed optimally and re-
versibly into 7 bits, and three digits into 10 bits, by a
very simple algorithms based on the fixed-length com-
bination of two variable field-length encodings. In over
half of the cases the compressed code results from the
conventional BCD code by simple removal of redun-
dant 0 bits. A long decimal message can be subdivided
into three-digit blocks, each separately compressed; the
result differs from the asymptotic minimum length by
only 0.34 percent. The hardware requirement is small,
and the mappings can be done manually.

Chen-Ho encoding is one of many possible encodings
for decimal digits; it encodes three decimal digits in 10
bits with a 0.34% wastage, giving a 20% more efficient
encoding than simple BCD (one digit in 4 bits). This
compression allows a 33-digit decimal number with a
three- or four-digit scale or exponent to be held in a
128-bit representation. We’ve also explored similar en-
codings which allow the same encoding for the least
significant 7 bits of a 10 bit encoding as a 7 bit encod-
ing.

The specific encoding preserves much of the identity
of the three decimal digits, and allows simple process-
ing; it does not require multiplications or divisions to
encode or decode to or from BCD.

The following tables fully describe the encoding
(compression) and decoding (expansion to BCD); a-
1 represent the 12 bits of three BCD digits, and p-y
represent the 10 bits of the encoded digits.

153

http://www2.hursley.ibm.com
http://www2.hursley.ibm.com

aei
000
100
010
001
011
101
110
111

Expand 10 bit binary encoding t o 12 bit BCD:

p qrs tuv wxy
0 bcd fgh jkl
1 OOd fgh jkl
1 Old bch jkl
1 10d fgh bcl
1 l l d OOh bcl
1 l l d Olh fgl
1 l l d 10h jkl
1 l l d l l h 001

154

pqrtu
O....
100..
101..
110..
11100
11101
11110
11111

abcd efgh ijkl
Oqrs Otuv Owxy
loos Otuv owxy
Otus lO0v owxy
owxs Otuv 1ooy
owxs lO0v l0Oy
100s owxv 1ooy
loos lO0v owxy
100s 1oov 1ooy

