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Abstract 

E v e n  though decimal ar i thmet ic  i s  pervasive in fi- 
nancial and commercial transactions,  computers are 
s td l  implement ing  almost all arithmetic calculations 
using binary ar i thmet ic .  A s  chip real estate becomes 
cheaper it i s  becoming likely tha t  more  computer  m a n -  
ufacturers will  provide processors wi th  decimal arith- 
me t i c  engines. Programming languages and databases 
are expanding the  decimal data types available whale 
there has been little change in the  base hardware. As  
a result, each language and application i s  defining a 
different ar i thmet ic  and f e w  have considered the  e f i -  
ciency of hardware implementa t ions  when  sett ing re- 
quirements.  

In th is  paper, we  propose a decimal f o r m a t  which  
mee t s  the requirements of existing standards for deci- 
m a l  arithmetic and as e f i c i en t  f o r  hardware implemen-  
ta t ion .  W e  propose th i s  specification in the  hope tha t  
designers will consider providing decimal ar i thmet ic  in 
fu ture  microprocessors and tha t  f u ture  decimal software 
specifications will  consider hardware efficiencies. 

1. Introduction 

People habitually perform arithmetic in base 10. 
When calculations are moved to computers there is 
usually a loss in translating decimal fractions to a 
binary representation. Common decimal values such 
as 0.1 can be represented exactly in decimal but can 
only be approximated in a binary floating-point for- 
mat. Traditionally, financial transactions are therefore 
performed in a scaled binary or decimal integer for- 
mat. Both of these formats are fixed point and so, 
even though they avoid fraction approximation, they 
are severely limited in the range of numbers they can 
represent. Further, in many applications, such as the 
calculation of a monthly mortgage payment, round- 
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ing is required. In the fixed point formats, rounding 
must be explicitly applied in software rather than be- 
ing provided by the hardware. To address these and 
other limitations, we propose implementing a decimal 
floating-point format. But what should this format be? 
This paper discusses the issues of defining a decimal 
floating-point format. 

First, we consider the goals of the specification. It 
must be compliant with standards already in place. 
One standard we consider is the ANSI X3.274-1996 
(Programming Language REXX) [l]. This standard 
contains a definition of an integrated floating-point and 
integer decimal arithmetic which avoids the need for 
two distinct data  types and representations. The other 
relevant standard is the ANSI/IEEE 854-1987 (Radix- 
Independent Floating-point Arithmetic) [a].  The IEEE 
754 standard [3] is a binary standard which also 
meets this radix-independent standard. The radix- 
independent standard gives us guidelines for formats 
and exponent ranges that need to be considered and 
specifically describes requirements for base 10 floating 
point. 

A floating-point format must also permit efficient 
implementation. One of the difficulties with decimal 
arithmetic is that it is less efficient than binary arith- 
metic. Representations take up more memory and exe- 
cution time of an operation is inherently longer. How- 
ever, if the data  is already stored in memory in a dec- 
imal format and conversions between decimal and bi- 
nary formats are costly, then it can be more efficient 
to carry out computations directly in decimal. Fur- 
ther, if the chosen format requires very little hardware 
to support then it is likely that future microproces- 
sors would implement it in hardware, just as most im- 
plement binary floating-point arithmetic today. From 
a financial and business software standpoint, decimal 
floating-point hardware is as attractive as a graphics 
engine is attractive to a games developer. 

Other considerations in developing a specification 
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Language 
c & c++ 

COBOL 

Java 
C# 

os /400  CL 
PL/I 

PSM 
Rexx 
RPG 

Platform 
S/390 
AS1400 
Others 
All 
All 
All 
AS/4000 
S/390 
AS1400 
Others 
All 
All 
AS1400 

Support 
Fixed 
Fixed 
Fixed 
Fixed 
Float 
Floating 
Fixed 
Fixed 
Fixed 
Fixed 
Fixed 
Floating 
Fixed 

Precision 
31 
31 
31-38 
31 
28 
infinite 
15 
15 
15 
31 
31 
infinite 
30 

Comments 
C only 
C only 
In various libraries 
32 digit Floating proposed 

Using IBM BigDecimal class; java.math is fixed point 
Scale <= 9 
The FLOAT Decimal data type is actually binary 

Implemented via translation to C 

Scale <= 9 

Table 1. Software and Platforms Implementing Decimal  Arithmetic 

are that it should be efficient for reading and storing 
decimal data in databases. Decimal data  are usually 
stored in Binary Coded Decimal (BCD) notation. Typ- 
ical decimal data  are fixed point with up to 20 dig- 
its of precision, including up to  10 fractional digits. 
There needs to  be efficiency in reading the data  out 
of a database, operating on it, scaling and rounding 
it,  and then storing the data  back into the database 
with a fixed point notation. These requirements favor 
a BCD format. 

A further constraint on a specification is the need to 
allow for future expansion of the notation. An architec- 
ture or format should be robust enough to grow with 
future changing needs. One possible mechanism could 
be through the use of special values. There needs to  be 
enough room in the format to support infinities, Not-a- 
Number (NaN) values, and both positive and negative 
zeros. In the future there might be additional values, 
such as subnormal numbers, considered too. 

In summary, the goals of the specification are: 

1. It should allow efficient hardware or software im- 
plementation of decimal floating-point 

2. It should support numbers to  be used for the 
floating-point and integer decimal arithmetic de- 
fined in ANSI X3.274-1996 (Programming Lan- 
guage REXX) 

3. It should support numbers and values to  be 
used for the floating-point arithmetic defined 
in ANSI/IEEE 854-1987 (Radix-Independent 
Floating-point Arithmetic) 

4. It should allow efficient use of existing data in 
databases 

5. It should allow for future expansion. 

The remainder of this paper discusses a specifica- 
tion for decimal floating-point data types which best 
meets these goals and fits within appropriate lengths. 
Existing hardware architectures suggest that represen- 
tations be 32, 64,80, or 128 bits in length, and these are 
convenient for software, too. It is proposed that only 
64 and 128 bit representations be defined a t  this time, 
forming the single and double formats as described in 
the IEEE 854 standard. Some prior work by Johnstone 
and Petry [4] showed a 32 bit format but this length 
does not meet most software requirements. Hull [5] 
suggests a variable precision format but this does not 
map easily to hardware implementations. Note that 
the 854 standard requires a single precision be defined 
and recommends that there should be an  extended pre- 
cision. Double precision satisfies the requirements of 
single-extended precision. 

Software requirements are first discussed, followed 
by the overall decimal format, which is similar to that 
described by Ris[G]. These are followed by discussion 
on the efficiency and requirements for each part of the 
format, including the representation of the integer, ex- 
ponent, and special values, the ordering of parts, and 
the length of the exponents. Finally, complete formats 
will be described. 

2. Software Requirements 

Table 1 shows a list of several common languages 
which define decimal arithmetic (sometimes using li- 
braries). Also listed is the support that is provided on 
a given platform. The IBM S/390 (2-Series) platform 
has 31 digit decimal integer arithmetic hardware and 
this is used by many of the languages including C and 
COBOL. Java and REXX both provide floating-point 
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decimal representation with an  unlimited number of 
digits. For other languages, the required support is ap- 
proximately 31 or 32 decimal digits. There are some 
instances of 38 digit support in both languages and 
databases. Hence, the maximum requirement in prac- 
tice appears to be 38 digits, although 31 or 32 digits 
meets the needs of almost all real applications. 

3. Decimal Arithmetic Specification 

There has already been work in defining a standard 
decimal floating-point arithmetic specification [7, 81. 
These documents define a set of operations and rules, 
but do not define a concrete representation of numbers. 
The present study discusses the choice of representa- 
tion. 

These other decimal arithmetic specifications [7, 81, 
however, detail many useful aspects such as the oper- 
ations, formats, and rounding modes that need to be 
supported to  be useful for multiple languages and ap- 
plications. The core operations needed are Add, Sub- 
tract, Plus, Minus, Multiply, Divide, Power, Divide- 
Integer, Remainder, and Compare. Several exponential 
formats may need to be provided, including scientific 
and engineering notation, but these can be supported 
by a single machine representation. Rounding modes of 
round-half-up, round- half-even, round-ceiling, round- 
down, and round-floor are required by one or other of 
the existing standards. Rounding is applied when the 
input operands or a result are too long, as set by a 
maximum precision control. 

There are no requirements forced on the machine 
representation from these decimal arithmetic specifica- 
tions, other than certain limits and the need to distin- 
guish integer values. However, a decimal floating-point 
number is assumed to consist of a sign, an integer (the 
specification assumes no maximum size), and an expo- 
nent which indicates a power of ten. The numerical 
value of a number is described by the following: 

The next sections describe the choice of the machine 
(concrete) representations for each part of the format. 

4. Integer Representation 

The significand of the decimal floating-point nota- 
tion has its radix point to right of all digits and is con- 
sidered to be an integer. The representation format of 
the integer has a large effect on the implementation. 
The integer can be chosen to be identical in format to  

the data  in memory, which are typically in BCD for- 
mat,  or it could be a more compact format. If it is 
more compact then a transformation step is required 
to  move data  from memory into the internal format. 
Other effects that are important are that overflows or 
rounding precision boundaries are more easily spotted 
if the format allows easy identification of decimal digit 
boundaries. Similarly, carries can easily be detected 
and renormalization of the representation is made eas- 
ier if decimal digit boundaries are preserved. On the 
other hand, decimal adders are slightly slower than bi- 
nary adders and more complex operations are corre- 
spondingly slower, too. Therefore, the integer format 
must be picked carefully. 

The three most interesting formats for the integer 
are: 1) Binary format , 2) Binary Coded Decimal for- 
mat (BCD, 4 bits per digit), 3) Compressed BCD for- 
mat. 

Binary representation is the most compact form and 
allows very fast multiplications and divisions. In this 
format, additions and subtractions which require shift- 
ing are slow, and rounding and normalization can be 
difficult. Johnstone and Petry [4] chose this type of 
format and they show that there are complexities in 
decimal base scaling which requires division or multi- 
plications by 10, as well as significand threshold de- 
tection. Also, data  are typically stored in memory in 
BCD format and therefore would require conversion 
into the binary format. Binary format also requires a 
costly conversion in order to provide input or results as 
character strings. For these reasons, it is not the best 
choice. 

The second possibility is BCD (4 bits per digit). 
This format eliminates the cost of the conversion of the 
integer data  when loading an operand from memory. It 
is also easy to perform rounding and normalization of 
an intermediate result, and conversions to  and from 
strings. It is slightly slower than the binary represen- 
tation for unshifted additions and subtractions and is 
moderately slower for divisions and multiplications. It 
is also a wasteful notation since it only uses 62.5% of 
the representation space. This wastage can be a criti- 
cal factor in determining the format since it determines 
how many digits can be represented within the length 
constraints, such as a 64 bit or 128 bit maximum. 

The third, Compressed BCD, format is between a 
BCD representation and a binary representation. To 
convert between a large binary and a BCD number is 
time consuming and requires an iterative process of di- 
vision by powers of ten. Alternative encodings, such 
as Chen-Ho [9] encoding, can be much faster. This en- 
coding puts 3 decimal BCD digits into 10 binary bits 
which is significantly more efficient than BCD encod- 
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ing which would require 12  bits. It is assumed that 
the internal representation in the hardware would still 
be BCD notation and there would be a transformation 
step (requiring only simple boolean logic) to and from 
the encoded format. Compressed BCD format, there- 
fore, has the advantages of BCD format while encoding 
more digits into the same space, a t  the cost of an extra 
transformation step. From the range of possibilities for 
compressed BCD formats the most attractive compres- 
sion ratios appear t o  be 3 BCD digits to 10 bits and 2 
BCD digits to 7 bits, so these two encodings are consid- 
ered. We have devised an  improved Chen-Ho encoding 
which allows for 7-bit encodings which are a subset of 
the 10-bit encodings. 

Many other encodings have been used in the past, in- 
cluding Bi-quinary, Gray, excess-3, 2-of-5, 1-of-10, and 
others. These encodings do not offer compelling ad- 
vantages for modern hardware. 

To summarize, there is an advantage in the binary 
representation for pure processing power but there are 
significant costs in creating a rounded floating-point 
decimal result and other conversions. Therefore, a 
BCD format has a distinct advantage for ease of com- 
putation. However, 4 bits per digits is inefficient and 
so the compressed BCD encoding methods should be 
considered since they provide more decimal digits with 
very little extra cost. 

5. Exponent Representation 

There is a different set of requirements for the repre- 
sentation of the exponent. For the exponent, updates 
due to normalization or shifting the integer result in 
simple additions to  the exponent. Also, overflows are 
less timing critical in the exponent calculation than for 
the integer. Therefore, decimal digit boundaries are 
less important for the exponent and a binary format 
is acceptable. Other concerns in representing the ex- 
ponent are that ,  in typical binary floating-point units, 
determining the relative magnitude difference of the 
exponents is timing critical for floating-point addition. 
Hence, a format that allows quick comparisons of ex- 
ponents is preferred. 

Three representations are considered for the expo- 
nent: 1) Binary twos-complement, 2) Binary unsigned 
with bias, and 3) Binary Coded Decimal (BCD). 

A binary twos-complement exponent without a bias 
is simple and allows a large range in a given amount of 
storage. This type of format allows a fast processing 
speed since binary adders are slightly faster than BCD 
adders. There is a slight disadvantage that a BCD rep- 
resentation in memory would need to be converted to  
a binary number but the range of exponents is usually 

much smaller than the range of the integer. 
A binary exponent with a bias has similar advan- 

tages to binary twos-complement. This format is sim- 
ilar to  binary floating-point exponent representation. 
One reasons why the IEEE 754 binary floating-point 
standard [3] chose this format was that it is easy to 
compare relative magnitudes of unsigned binary num- 
bers. This type of format has the disadvantage that 
bias offsets have to be applied during arithmetic oper- 
ations (e.g., Product Exponent = A exponent + B ex- 
ponent - Bias). This complicates the exponent dataflow 
slightly. 

BCD format allows the simplest conversion from 
memory and string formats. However, it  slightly more 
difficult and slower for hardware to handle arithmetic 
computations. 

We favor the binary unsigned representation with a 
bias since it is very similar to, and can even be the same 
as, the IEEE 754 binary floating-point format. Note 
that this exponent raises a power of 10 even though it 
is encoded in binary. Binary floating-point designers 
have perfected implementations of exponent dataflows 
with this type of format and therefore it should not 
present any new difficulties. 

6. Special Values 

Special values such as infinity and Not-a-Number 
(NaN)  need to  be representable in the machine format. 
There are several ways the format can allow this; the 
choice depends on the exponent format and the use of 
bits in the rest of the format. Two solutions are 1) 
using reserved exponent values, and 2) using separate 
bits in the format. 

Using reserved exponent values is possible since 
there will always be invalid bit formations of the ex- 
ponent. If the exponent were represented as a BCD 
format then invalid bit combinations could be used. 
Alternatively, if the exponent is in a binary format, it 
is always possible to reserve exponent values near the 
end of the range. In particular, if the exponent is lim- 
ited to a decimal digit range (e.g., -99 to $99) a number 
of binary values outside this range will available. 

Using a separate bit of the format would make it 
easier to detect a special number but it is inefficient 
to dedicate a bit of the format for this sole purpose. 
Therefore, we prefer representing special values by us- 
ing reserved exponent values. 

7. Ordering 

The ordering of the sign, exponent, and integer must 
We prefer having the sign, then the be determined. 
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Precision (digits) 10 11 12 13 
required Emax 26 28 31 33 
preferred Emax 51 56 61 66 
double Emax 415 455 495 535 

Table 2. Requirements for Exponent Range 

14 ... 24 25 26 27 28 29 
36 ... 61 63 66 68 71 73 
71 ... 121 126 131 136 141 146 
575 

exponent, and then the integer, similar to  the IEEE 754 
representations. In software, however, it is common 
to place the exponent after the sign and integer (for 
example, 12.33+3). We prefer the sign and exponent 
on the left side to  give them higher precedence than the 
integer, to  simplify reuse of IEEE 754 circuitry, and 
also to  keep the integer justified to one end to make 
conversion of memory data  easier. 

8. Length of Exponent 

The exponent representation is assumed to be bi- 
nary unsigned with a bias and it is also assumed that 
the two formats have total lengths of 64 bit and 128 bit. 
A length for the exponent field that is both reasonable 
and meets the requirements of the IEEE 854 standard 
must be determined. The IEEE 754 standard devotes 
11 bits of the 64 bit format and suggests at least 15 
bits for a double extended format. These lengths turn 
out to be good choices for decimal exponents too. An 
11 bit exponent gives a range of -1024 through $1023 
which for decimal exponents comfortably represents 3 
digits (-999 through $999). Similarly, a 15 bit expo- 
nent yields a decimal range of 4 decimal digits (-9999 
through $9999) with little waste. 

The IEEE 854 standard requires that the exponent 
range (Emax - Emin) be greater than 5 times the max- 
imum precision in digits, and recommends that it be 
greater than 10 times the precision. This gives the 
minimum values of Emax shown in the second and 
third rows of Table 2. Plausible single precisions are 
shown to the left of the table, plausible double preci- 
sions on the right. The bottom row in the table shows, 
for each of the plausible single precisions, the recom- 
mended minimum Emax for double precision. This 
must be greater than or equal to 8 times the Emax 
for single precision, plus 7. 

It is apparent from the table that if the latter con- 
straint is satisfied then the preferred Emax for double 
precision will also be satisfied. 

IEEE 854 recommends that ,  for base 10 represen- 
tations, the minimum exponent Emin should have the 
same absolute value as the maximum exponent Emax. 
That  is, Emin = -Emax. Balancing the range in this 

way minimizes overflows and underflows when the in- 
verse of a number is calculated. 

Since the representation comprises an integer and 
exponent (instead of a fraction and an exponent), the 
maximum exponent in the representation must be re- 
duced so that the effective exponent range is balanced. 
For example, if the integer were 13 digits and the ex- 
ponent 3 digits (-999 through $999) then the range 
of positive numbers would be from 1E-999 through 
9.999999999999E+1011, which is unbalanced. 

Instead, the maximum exponent in the representa- 
tion should be reduced by D-1 (where D is the number 
of digits in the integer). 

For this example the allowed range in the represen- 
tation should therefore be -999 through +987, lead- 
ing to a balanced range of numbers with a guaranteed 
maximum exponent length when converted to charac- 
ter form. That  is, positive numbers would range from 
13-999 through 9.9999999999993+999. 

Implementations of IEEE 754 use the following splits 
(precision is fraction bits + 1): 

Binary bits Decimal (approx) 

15 E+4931 
34 E+4931 

9. Proposed Format 

The exponent range and format have been deter- 
mined for the two formats: the exponent is binary un- 
signed with a bias and is 11 bits for the 64 bit for- 
mat  and 15 bits for the 128 bit format. This leaves 52 
bits and 112 bits for the integer. The integer could be 
BCD or a compressed BCD format. Table 3 shows the 
number of digits possible for the different lengths and 
encoding formats. In parentheses is the number of un- 
used bits in the encoding since 7 and 10 do not divide 
evenly into 52 and 112 bits. These unused bits could be 
left for future expansion and are probably best placed 
between the exponent and integer since this leaves the 
integer right-aligned. The BCD (4 bits per digit) for- 
mat  can only get a precision of 28 digits which is three 
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I BCD I 7:2 I 10:3 I binarv 
Single (52 bits) 
Double (112 bits) 

13 digits (0) 14 digits (3) 15 digits (2) 15 digits (2) 
28 digits (0) 32 digits (0) 33 digits (2) 33 digits (2) 

Table 3. Number of Decimal Digits for Different Integer Encodings 

or four digits fewer than are needed by many languages. 
Therefore, it would appear that a compressed BCD for- 
mat is needed. Both provide 32 or more digits which is 
acceptable - but not the 38 digit notation of the most 
demanding software requirements. 

Either of the compression formats are reasonable 
and we suggest that either one could be used. Note 
that they are easy to implement, as detailed in the ap- 
pendix. Since both are easy to implement 'we slightly 
favor the one with greater compression, the 10:3 com- 
pressed BCD format. This also leaves the same number 
of bits unused for both lengths. 

The proposed format is summarized in Table 4. 

Analyzing the exponent representation further, the 
range of exponents should be -999 to $985 for single 
precision and -9999 to $9967 for double precision. This 
creates a range of values for single precision and double 
precision as shown in Table 5. The bias is chosen to 
be the same as IEEE 754 double and quad precision 
with 1023 and 16383. Special values could be assigned 
outside the exponent range, with infinity perhaps equal 
to the maximum exponent (2047 or 32767), quiet NaN 
at the maximum exponent minus 1, and signaling NaN 
at the maximum exponent minus 2. It is also suggested 
that the minimumexponent value (0) be reserved as an 
indication of an uninitialized number. 

10. Decimal Floating-Point Unit Com- 
monality 

If both the proposed decimal floating-point format 
were implemented in a DFPU (decimal floating-point 
unit) and the IEEE 754 standard in a BFPU (binary 
floating-point unit) on a microprocessor, there is some 
commonality between these units. The formats are 
very similar so the input multiplexors could be shared 
which separate the data into sign, exponent, and sig- 
nificand. The exponent dataflow could reuse some of 
the adders though this is only a small area compared 
to the significand. And the significand probably can 
not use common hardware since the arithmetic is on a 
BCD notation versus a binary notation. Therefore, it 

may be best to have separate dataflows for the DFPU 
versus the BFPU. Though, the register file could be 
common. It is probable that decimal operations are 
clustered and the floating-point register file would be 
unused a t  this time. Load and Store instructions could 
be common between the two formats. This is akin 
to S390 architecture [lo] not defining separate loads 
and stores for binary floating point versus hexadecimal 
floating point format. Thus, there are some savings 
possible. More commonality is possible if the signif- 
icand were in a binary format, but this creates more 
complexities in scaling and thresholds than it is worth 
in area savings. As section 4 states it is also beneficial 
to remain in BCD notation rather than going through 
conversions on every load and store. 

There is also a possibility of commonality of the 
DFPU with the fixed-point unit in microprocessors 
which implement decimal arithmetic. The IBM 8- 

Series formerly the S/390 line of computers contains 
a 64-bit or 16-digit decimal adder on the current e900 
microprocessor [ll]. This decimal adder is d,ouble the 
size of the previous generation processors due to  in- 
creased demand in decimal performance. 

11. Conclusion 

We have presented arguments for a machine repre- 
sentation of decimal floating-point numbers. The pro- 
posed formats provide for precisions of up to 33 decimal 
digits with exponents of up to 4 decimal digits. The 
two formats are compact and efficient, and occupy ei- 
ther 8 or 16 bytes. We were able to exceed 31 digits of 
precision by using a BCD compression technique which 
can be expanded in hardware with a couple of logic lev- 
els or in software by simple table lookup. 

We propose this format specification in order to en- 
courage microprocessor designers to implement it or a 
similar format. The proposed format is very similar to 
the IEEE 754 binary floating-point format which has 
been implemented in almost all microprocessors. There 
are still some unspecified details of the format which 
could be adjusted, such as the exact representation of 
special values. We hope to work together with other 
companies to specify a complete and common format. 

We also detailed the reasons for the encodings of 
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Sign (1 bit) 
Sign (1 bit) 

Exponent (11 bit, unsigned binary with bias) 
Exponent (15 bit, unsigned binary with bias) 

Table 4. Proposed Decimal Floating-point Formats 

Integer (52 bits : 15 digits (Compressed BCD 10:3)) 
Integer (112 bits : 33 digits (Compressed BCD 10:3)) 

I Single Precision I Double Precision 
I - 9 . 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Q ~ ~ 9 9 9 9 9 ~ ~ 9 9 9 9 E + ~ ~ 9 ~  Maximum Negative 1 -9.99999999999999ES999 

Minimum Negative 
Minimum Positive 
Maximum Positive 

-1.00000000000000E-999 -1.00000000000000000OOOOOOOOOOOOOOOE-9999 
+ 1.0000 00000 00000E-99 9 
+9.99999999999999E+999 +9.99999999999999999999999999999999E+9999 

+ 1 .OOOOOO 000 00 000 00 0 00 00 0 0000 00 00 0 OE-9 999 

Table 5. Decimal Floating-point Format Range 

each field in the format and also suggest reasonable 
limits for each format. This is to encourage language 
standards committees to  consider hardware limitations 
when creating their specifications so they can avoid 
creating requirements that  exceed the likely hardware 
capabilities. 
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12. Appendix: Chen-Ho Implementation 

Traditionally, n decimal digits are represented by 4n 
bits in computers. However, as  Chen and Ho observed, 
two BCD digits can be compressed optimally and re- 
versibly into 7 bits, and three digits into 10 bits, by a 
very simple algorithms based on the fixed-length com- 
bination of two variable field-length encodings. In over 
half of the cases the compressed code results from the 
conventional BCD code by simple removal of redun- 
dant 0 bits. A long decimal message can be subdivided 
into three-digit blocks, each separately compressed; the 
result differs from the asymptotic minimum length by 
only 0.34 percent. The hardware requirement is small, 
and the mappings can be done manually. 

Chen-Ho encoding is one of many possible encodings 
for decimal digits; it  encodes three decimal digits in 10 
bits with a 0.34% wastage, giving a 20% more efficient 
encoding than simple BCD (one digit in 4 bits). This 
compression allows a 33-digit decimal number with a 
three- or four-digit scale or exponent to  be held in a 
128-bit representation. We’ve also explored similar en- 
codings which allow the same encoding for the least 
significant 7 bits of a 10 bit encoding as a 7 bit encod- 
ing. 

The  specific encoding preserves much of the identity 
of the three decimal digits, and allows simple process- 
ing; it does not require multiplications or divisions to  
encode or decode to or from BCD. 

The following tables fully describe the encoding 
(compression) and decoding (expansion to  BCD); a- 
1 represent the 12 bits of three BCD digits, and p-y 
represent the 10 bits of the encoded digits. 
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aei 
000 
100 
010 
001 
011 
101 
110 
111 

Expand 10 bit binary encoding t o  12 bit BCD: 

p qrs tuv wxy 
0 bcd fgh jkl 
1 OOd fgh jkl 
1 Old bch jkl 
1 10d fgh bcl 
1 l l d  OOh bcl 
1 l l d  Olh fgl 
1 l l d  10h jkl 
1 l l d  l l h  001 
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pqrtu 
O.... 
100.. 
101.. 
110.. 
11100 
11101 
11110 
11111 

abcd efgh ijkl 
Oqrs Otuv Owxy 
loos Otuv owxy 
Otus lO0v owxy 
owxs Otuv 1ooy 
owxs lO0v l0Oy 
100s owxv 1ooy 
loos lO0v owxy 
100s 1oov 1ooy 


