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The latest IBM zSeriest processor, the IBM System z10e

processor, provides hardware support for the decimal floating-point
(DFP) facility that was introduced on the IBM System z9t

processor. The z9t processor implements the facility with a
mixture of low-level software and hardware assists. Recently, the
IBM POWER6e processor-based System pe 570 server
introduced a hardware implementation of the DFP facility. The
latest zSeries processor includes a decimal floating-point unit based
on the POWER6 processor DFP unit that has been enhanced to
also support the traditional zSeries decimal fixed-point instruction
set. This paper explains the hardware implementation to support
both decimal fixed point and DFP and the new software support for
the DFP facility, including IBM z/OSt, Javae JIT, and C/Cþþ
compilers, as well as support in IBM DB2t and middleware.

Introduction
Most processors today support fixed-point integers and

binary floating point (BFP) [1] in hardware but do not

support decimal arithmetic natively. Decimal arithmetic

is very important for banking and commercial financial

transactions. Because transistor size is shrinking at an

exponential rate, it follows that more user features should

be included in hardware rather than in software, but

surprisingly, today’s computers do not support a native

decimal fixed-point or floating-point data type, with the

notable exceptions of simple pocket calculators and

mainframes.

Outside of the scientific community, most people prefer

the decimal number system. Furthermore, commercial

financial transactions need to be performed in a decimal

number system because BFP has rounding errors that

occur at binary radix points, which most likely do not

correspond to a decimal radix point [2]. A decimal format

was needed to support commercial computing. In the

past, proprietary formats have gained little acceptance in

the industry. Concurrent with our investigation into

determining a universal decimal floating-point (DFP)

format with multiple companies, an IEEE committee was

investigating enhancements to the BFP standard. We

joined the committee and helped to direct the effort to

include the definition of DFP formats and operations in

the IEEE 754-2008 Standard [3]. The hope is to get all

computers to support a common arithmetic system that

can benefit all users. When scientists publish results, the

numbers they publish are usually decimal numbers. There

would be no rounding errors in the display of their

results, assuming there is enough precision, if they did all

their computations in a decimal number system.

Commercial computing requires decimal now, and as

performance closes on binary, there is a possibility that

the scientific world will switch to decimal as well.1 The

new IBM System z10* processor and the IBM POWER6*

processor, part of the IBM System p* 570 server, support

DFP natively in hardware, although support in software

is widely available for other platforms.

This paper describes the IBM zSeries* hardware

decimal floating-point unit (DFU), showing its dataflow,

common instruction execution, and fixed-point

operations. Following this is a description of the software

that supports the new hardware, including operating

systems (OSs), middleware, programming languages, and

application-hosting environments.
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paper may be copied by any means or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

1Professor William Kahan of the University of California Berkeley (the primary
architect of the IEEE 754-1985 Standard for BFP computation and its radix-
independent follow-on, IEEE 854) at an IEEE 754-2008 committee meeting,
December 2002 at Santa Clara, California. About 25 people were present, including
two of the authors of this paper.
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Decimal floating-point unit hardware
The zSeries DFP facility was introduced in the IBM

System z9* platform [4]. It is implemented with a

combination of hardware assists and vertical microcode,

called millicode [5]. The implementation uses the fixed-

point decimal hardware to achieve reasonable

performance.

The first hardware implementation of the IEEE 754-

2008 floating-point standard [3] using a DFU was on the

POWER6 processor [6]. The z10* DFU is based on this

design, and both were implemented by essentially the

same team. The POWER6 processor design was initiated

first and was generally available in 2007 on the System p

570 server. At first, there was a common design point for

the two processors, but it later diverged to meet the

unique requirements of the z10 processor.

The z10 DFU supports DFP operations in a manner

similar to the POWER6 processor and also supports the

traditional fixed-point decimal operations that have been

part of the architecture of IBM mainframes for more than

40 years [7]. The z10 DFU uses the main dataflow of the

POWER6 processor with additional interfaces to the

fixed-point unit (FXU) and data cache as well as a

completely new set of controls to support the additional

instructions in the IBM z/Architecture* platform. Both

the z10 DFU and the POWER6 processor DFU have 54

DFP instructions, but the z10 DFU has an additional 13

decimal fixed-point instructions and four hardware-assist

instructions. DFP operands have three formats: short,

long, and extended, which have 7, 16, and 34 digits of

significance, respectively, although arithmetic operations

are performed only on the long and extended formats.

The operands are loaded from memory into the 16 3 64-

bit floating-point register (FPR) files, which are also

shared with the binary and hexadecimal floating-point

operations. The FPRs are formatted like general memory

locations and do not separate the sign, exponent, and

significand. The significand is in a compressed format that

is expanded into binary coded decimal (BCD) format.

Basic DFU dataflow

The DFU physical dataflow is shown in Figure 1. Each

box represents the physical dimension of a component,

called a macro. On the left-hand side of the DFU is the

custom dataflow of the significand. Immediately below

are several exponent macros, and on the right-hand side

are control and exponent macros. The significand custom

dataflow is very close to that of the POWER6 processor

design, whose functional dataflow is shown with

interconnections by Eisen et al. [6].

At the top of the 144-bit-wide dataflow of the

significand is the dumult macro, otherwise known as the

multiple creator macro, which creates two times (23) and

five times (53) the multiplicand. Just below it is the durot

macro, otherwise known as the rotator, which is used for

shifting the significand left or right and has a built-in

mask used to zero-out digits, depending on the operation.

Next, there are a few small macros, including leading-zero

detect macros for each operand, dulzd_a and dulzd_b,

and an exponent difference macro, duxdif. The du10to3

macro is used to expand DFP data. The significand is

compressed in densely packed decimal (DPD) encoding

[8] and is expanded by the du10to3 macro to BCD

encoding. In the top to middle of the stack are the

operand A and B registers, duareg and dubreg. The

adder, duaddr, is located next to operand registers to

reduce wire length in this critical timing path. The adder

can be separated into two 18-digit adders or combined

into one 36-digit adder that has a latency of two cycles,

but a throughput of one add per cycle. Several

multiplexers and fixed shifters are contained in the

dumisc macro. A BCD result register is contained in the

dumult
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Figure 1

System z10 decimal floating-point unit floorplan.
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duwreg macro. The BCD data is compressed back to

DPD format in the du3x10 macro and placed in the C

register, ducreg, to be sent to the FPR. There is also a

macro for converting BCD to binary, ducvb, and the

reverse, ducvd, and a macro for detecting the number of

leading zeros in the result, dulzdw. These macros make

up the dataflow of the significand; parity is used to check

the interfaces with other units, and residue-3 checking [9]

is used to protect the significand dataflow from transient

failures.

Below the significand stack is most of the exponent

computation logic in the duxres and duxres2 macros.

Note that there are latch buffers above and below these

macros to stage delayed signals to duplicate copies of the

macros (duxres_ras and duxres2_ras) so that checking

is not timing critical.

The stack on the right-hand side is mostly for controls

and consists primarily of random logic macros. The

multiplication and division controls are in ductlm, the

addition controls are in ductla, and miscellaneous

instruction controls are in ductlx. The ductlg macro is

used to perform decodes of the instruction text and also

contains global controls. It is duplicated for reliability

(ductlg_ras). The ductls1, ductls2, and ductls3

macros perform miscellaneous operations, such as

handling special results (e.g., not-a-number) and

implementing a common rounding routine used by all

arithmetic operations. The ductls0 macro performs

much of the RAS (reliability, availability, and

serviceability) checking and reporting. Mixed in with the

control macros are duxabcq, which holds the input

exponents, and duxaln, which creates a shift amount for

alignment of the significands. There is a lookup table for

division to prescale the operands by an approximation to

the reciprocal of the divisor in dupstbla.

DFP addition

Floating-point addition can be split into three cases:

Case 1—Exponents equal.

Case 2—Shift the operand with the bigger exponent

only.

Case 3—Shift both operands.

For case 1, the operands are transmitted to the A and B

operand registers, duareg and dubreg. In cycle 1, the

operands are expanded from DPD format to BCD format

by the du10to3 macro and placed back into the A and B

operand registers. In cycles 2 and 3, the operands are

added in the duaddr macro, and the result is placed in the

W register, duwreg. In cycle 4, the BCD result is

converted back to DPD format by the du3x10 macro and

placed into the C register, ducreg. The result can then be

written back to the FPRs.

Cases 2 and 3 use the rotator in durot to align the

significands properly. The shift amounts driven by

duxaln are determined by subtracting the exponents in

duxdif and by determining the number of leading-zero

digits.

All three cases might result in rounding. Rounding is

accomplished by adding 1 to the significand in the least-

significant digit. This can result in a further shift right of

the significand. For case 3, subtraction can result in a

shift left one digit.

There are many different execution sequences for

addition that are dependent on the data. It takes several

cycles to inspect the data and determine which sequence

to use. Although it is difficult for the DFU to optimally

fill the pipeline and signal the instruction dispatch unit

(IDU) eight cycles in advance of ending, at least the

hardware hides all of these complexities from the user.

This shortfall is discussedmore in the section ‘‘Optimization

of floating-point operations.’’

DFP multiplication

Floating-point multiplication consists of expanding the

DPD significand to BCD format, multiplying the

multiplicand with all the digits of the multiplier one digit

at a time, and then summing the partial products. Since

up to twice as many digits are produced in the result as

there are in the input operands, rounding may be

necessary to fit into the target format.

The second step, creation of digit multiples of the

multiplicand, is implemented in the dumult macro. A

doubler and quintupler are used to create easy multiples

(13, 23, 53, and 103) of the multiplicand. The doubler

and quintupler are very fast because each digit is

independent of other digits and there is no carry

propagation. All possible multiples of the multiplicand

can be formed by a simple addition or subtraction of two

of the easy multiples [10].

The 36-digit adder is specially optimized to speed up

16-digit multiplication. The adder can work as a full

36-digit adder or as two independent 18-digit adders. For

16-digit multiplication, 18 digits is the perfect width for

an adder.2 One half of the adder is used to create a new

partial product every cycle. New partial products are

formed by summing or subtracting two easy multiples of

the multiplicand.

The third step, accumulating the partial products, is a

little tricky. The adder is a two-cycle adder, but it is

pipelined, and a new add can start every cycle. Given that

a new partial product is created every cycle, one cannot

simply sum the new partial product to the accumulated

2This is so because partial products are 17 digits (1 digit 3 16 digits results in 17
digits), and when shifted 1 digit from each other, the sum of two consecutive products
is 18 digits. Also, 18 digits is perfect summing pairs of partial products because each
pair is 18 digits, and when shifted 2 digits from each other, the least-significant 2 digits
can be accumulated directly while the upper 18 digits proceed through the adder.
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sum because it takes two cycles to accumulate. Instead,

pairs of partial products are first summed together

and then accumulated in the overall sum, so this half of

the adder is split into even and odd cycles, with even

cycles used to create sums of paired partial products and

odd cycles used to accumulate paired products with the

running sum.

For 34-digit multiplication, the adder remains one big

36-digit adder. Partial products are created every other

cycle and accumulated every other cycle with the running

sum. Therefore, 16-digit multiplication performs a 1316-

digit multiplication (1 digit multiplied by 16 digits) every

cycle, resulting in 16 multiplications and a series of

additions to accumulate the product; 34-digit

multiplication produces a 1 3 34-digit multiplication

every other cycle, resulting in 34 multiplications and a

series of additions. Shifting and rounding cycles also

result in additional cycles.

DFP division

The floating-point division algorithm is a nonrestoring

radix-10 prescaling method [11]. The most significant

digits of the divisor are used to index a lookup table of

the reciprocal. Two digits of the approximate reciprocal

L, called the prescale amount, are read from this table and

are used to scale the dividend N and divisor D as follows:

Q ¼ N=D
L approx 1=D
N

0 ¼ N3L
D

0 ¼ D3L
1:0 � D

0
, 1:11

P
i
¼ P

i�1
3 10� q

i�1
3D

0

q
i�1
¼ ðP

i�1
Þtr;

where Q is the quotient, q is the quotient digit, and Pi is

the ith iteration partial remainder and tr is used to

indicate truncation to one digit. The next partial

remainder is dependent on the current partial remainder

minus the quotient-digit guess times the scaled divisor.

Thanks to prescaling, the quotient-digit guess is simply

the most significant digit of the partial remainder. Thus,

the lookup table needs to be consulted only at the

beginning of the operation, leaving each subsequent

iteration much faster.

The multiplication (the quotient-digit guess) 3 (the

scaled divisor) is accomplished by storing the multiples

between 1 and 5. To save area, the multiples between

6 and 9 are determined by precalculating a second

partial remainder with the previous quotient-digit guess

plus an additional 1 or minus an additional 1. In the

subsequent iteration, the plus or minus 1 in the prior

iteration has a weight of 10. Two remainders are

calculated each iteration. PAi is calculated as the normal

remainder, and PBi is calculated with an additional plus

or minus 1 to the quotient-digit guess:

PA
i
¼ P

i�1
3 10� q

i�1
3D

0

PB
i
¼ P

i�1
3 10� ðq

i�1
6 1Þ3D

0
:

As an example, to form a multiple of 9, the secondary

partial remainder of the prior iteration PB is selected and

a quotient-digit guess of �1 is chosen, which is equal to

10 � 1 ¼ 9.

Prescaling takes approximately 19 cycles to normalize

the operands, access the lookup table, and multiply the

divisor and dividend by a two-digit reciprocal

approximation. Each iteration takes four cycles. It takes

one cycle to take the most significant digit of the adder

output to the multiple selection macro, another cycle to

select the multiple, and two cycles in the adder to perform

the subtraction of the partial remainder minus the

quotient digit times the scaled divisor. Thus, it takes

approximately 19 þ N 3 4 cycles latency, where N is the

number of digits of quotients needed. It takes a few

additional cycles for rounding.

Decimal fixed-point operations

Decimal fixed-point operations have been in the

z/Architecture since its beginning in 1964 [7]. Prior

generations of zSeries processors execute decimal fixed-

point operations in the FXU [12, 13]. The FXU is in the

heart of the processor and, on recent machines, contained

two 64-bit dataflows. For the z10 processor, the cycle

time, at 15 FO43, is much faster than prior generations,

and the functionality of the FXU had to be reduced. As a

result, most multicycle operations were moved out of the

FXU, and the dataflow was optimized for binary add,

rotation, and bit logical operations. With the growth in

the number of decimal instructions as a result of the

addition of floating-point instructions, it made sense to

create a separate auxiliary unit to handle all decimal

operations and to move them out of the critical center of

the processor. This had both benefits and disadvantages.

Both data types benefited from a dedicated dataflow with

all macros close together, but they had to overcome the

inherent delay associated with communicating with units

closer to the center of the core.

The z10 DFU implements 13 decimal fixed-point

instructions [14], including add (AP), subtract (SP),

compare (CP), multiply (MP), divide (DP), zero and

add (ZAP), shift and round (SRP), convert to binary

(CVB, CVBY, CVBG), and convert to decimal (CVD,

CVDY, CVDG). Test decimal (TP) is executed in the

FXU and edit (ED) and edit and mark (EDMK) are

implemented by millicode. Fixed-point operands are

variable in length up to 16 bytes, or 31 digits and a sign,

as specified by the length field in the instruction text.

3FO4, or fanout of 4-inverter delay, is the delay of an inverter driving four equivalent
loads.
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For fixed-point decimal operations, both source

operands and the target are in memory. Most processors

today do not support memory-to-memory arithmetic

operations because of such difficulties as variable-length

handling and the fetching of memory operands. However,

zSeries processors are optimal for memory accesses

because the execution pipeline for one instruction

includes both a memory access and an execution stage,

whereas RISC computers require multiple instructions to

accomplish the same task. Nevertheless, resolving

memory interlock dependencies is a concern. Since the

operands are in memory, using the result of a prior

operation creates an interlock in memory. If the

operations are not spaced apart in time, the load/store

unit (LSU) or IDU must compare the full addresses to

determine the interlock and somehow bypass the

operands. The new decimal floating-point architecture

makes dependencies easier and faster to handle because

the interlocks are simply in registers. It is easier to bypass

from 16 specific registers in the FPUs than to bypass

within a huge 64-bit address space in the LSU.

Decimal fixed-point operations have an execution

latency advantage over the decimal floating-point

operations. The main reason they are faster is that they

have fewer execution sequences, and thus, it is easier to

determine their cycles of latency. This latency is known

prior by the IDU and does not have to be signaled eight

cycles in advance. However, variable-length multicycle

instructions, such as fixed-point decimal multiply and

divide, signal the end of execution eight cycles in advance.

The execution of fixed-point decimal operations is the

same as the floating-point decimal counterparts, except

that no expansion, compression, or rounding cycles are

required. For instance, addition involves loading the

memory operands into the A and B registers, adding the

operands, and then sending out the result. A little more is

involved to handle the sign digit and the condition code.

The operands in memory are in packed BCD format,

which has BCD numeric digits with one digit of sign on

the right-hand (or least-significant) end of the operand.

The sign digit is aligned one digit to the left of the guard

digit in the adder and is forced to zero so it does not affect

the operation. Still, the sign digit is important to

determine the effective operation: add or subtract. A

magnitude result must be produced just as with floating-

point sign magnitude notation. This may involve post-

complementation if the bigger operand is incorrectly

subtracted from the smaller.

For addition and subtraction, the execution latency

is seven cycles for operands of 8 bytes or less and nine

cycles for operands with greater length. This includes all

special cases, including overflow. The compare operation

is even faster because no post-processing of a result is

needed; it has a latency of five cycles for 8 bytes or less,

and a latency of six cycles for longer.

Although decimal fixed-point operations are faster

than floating point, it is thought that floating point will

yield higher performance in a financial application

because of the following advantages:

� Dependencies are at the register level rather than

memory level.
� Inherent scale is maintained.
� Inherent rounding can be applied to any of eight

selectable rounding modes.
� It offers a greater range of numbers.

Optimization of floating-point operations

Common cases were optimized in the design. In a

pipeline, there is an advantage to gaining as much overlap

as possible between the current instruction and the

following instruction. To gain the optimal overlap, the

IDU must be notified eight cycles in advance. This is

difficult to do for all operations and all cases of input

data, so instead common cases were examined and,

specifically, DFP addition case 1 and DFP compare are

discussed.

DFP addition case 1

The most common form of addition is case 1 in which the

exponents are equal, but even for this case, there could be

rounding (if there is a carryout) or underflow handling for

a result below the normalized minimum number Nmin if

the exception is enabled. These subcases are rare. Case 1

would take only four cycles for the most common case.

Thus, for case 1, hardware is implemented to detect

whether the exponents are equal, that the sum of the most

significant digit of each operand is less than 9, and that

neither input is subnormal. The only problem is, it takes

four cycles to determine this early end detection and to

send a signal external to the DFU. This results in the

minimum latency of 12 cycles for back-to-back

operations because eight cycles are required to start up

the next instruction.

DFP compare

Compare does not have a result to round or the

possibility of an underflow. Therefore, it can be optimized

with a similar means as addition and results in a shorter

latency of 11 cycles for all cases.

Execution latencies

The latency of all operations is shown in Table 1. There is

a variation in the execution latency depending on whether

there is underflow, overflow, or rounding. Also, divide

and multiply are optimized to process only the number of

significant digits needed. Therefore, a smaller number of
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significant digits will be faster than a rounded full-

precision result.

Overview of z10 DFP hardware

The z10 processor offers a high-reliability DFU that

implements both the old decimal fixed-point architecture

and the new DFP architecture. The instructions are

implemented with an FPU that is separate from the

binary and hexadecimal floating-point pipelines and also

separate from the dual FXU pipelines. The main dataflow

consists of a two-cycle 36-digit adder that can be

pipelined every cycle. Both DFP and fixed-point decimal

use the same hardware-implemented arithmetic

algorithms. The floating-point operations require a few

more stages to expand, compress, and potentially align

operands, round the result, and invoke special results for

exception cases. The floating-point operations have the

advantage that the operands are passed in registers rather

than memory, which results in faster execution of

dependencies. Also, floating-point operations

automatically take care of scales and implicitly round

directly at the correct decimal radix point. The z10

processor offers highly automated and reliable DFP

operations.

Software support
Software support for the DFP feature was introduced in

the System z9 platform with IBM z/OS* release 6 at the

time of the initial availability of the z9* feature [4]. The

initial support that was provided was limited to the z/OS

control program, IBM z/VM*, and IBM High Level

Assembler (HLASM). Work to support the z9 facilities

has also begun for Linux** on System z* and the GCC

(GNU** compiler collection) tool chain.

z/OS control program support

The z/OS control program support for DFP was built to

utilize the infrastructure provided to support IEEE 754-

1985 binary floating-point (BFP) standard. This includes

detecting the attempted use of hardware DFP (HDFP)

facilities or the additional FPRs, activating the hardware

features, providing accessible indications of this use,

restoring the application state to reexecute the offending

instruction, and initiating the saving and restoring of the

extended state required by applications that use DFP.

z/VM

z/VM was updated so that guest OSs could make use of

the support provided in the System z9 platform at the

initial availability of the hardware, although z/VM itself

does not make use of DFP.

HLASM support

Support was provided by HLASM for all of the new

HDFP instructions and data formats, beginning with the

initial availability of the hardware feature in z9 Enterprise

Class and Business Class machines. The support was

delivered as service updates to the then current releases of

HLASM. HLASM allows definition of constant data in

all of the DFP data formats, with rounding performed

according to the rounding mode requested by the

programmer. Programs written to use DFP on z9

processors will run unaltered with improved performance

in the z10 processor.

Linux on System z kernel

The Linux on System z kernel takes a different approach

to support. An administrative action to update a file,

/proc/cpuinfo, is done to indicate a DFP-capable

central processing unit, and the feature is always turned

on.

Conversions

Our motivation for adding IEEE 754-1985 BFP to the

System z platform did not include an assumption that

users would convert application data from hexadecimal

floating point to BFP or the reverse. However, the

addition of DFP as a new feature for System z

applications assumes that customers want the option to

convert applications to DFP from other floating-point

systems. We support this by the conversion instruction

perform floating-point operation (PFPO) [14].

Commercial application software

The objective for DFP is that it must be possible to

support the inclusion and use of HDFP in commercial

applications. This led us to provide support for DFP data

and the hardware DFP instructions in the system

components that support the development, deployment,

and execution of these applications. Providing

appropriate support in the OSs and in assemblers is a

Table 1 Execution times of common operations.

Operation Type Cycles required

for execution

Double-word

operands

Quadword

operands

Add/subtract Floating point 12–28 16–31

Fixed point 7 9

Multiplication Floating point 16–55 17–104

Division Floating point 16–119 17–193

Compare Floating point 11 14

Fixed point 5 6
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base for this objective, but support in other components

is required as well.

Software support in z/OS

Languages and debuggers

The most important programming languages used to

write commercial applications that are hosted in z/OS

include COBOL, PL/I, C/Cþþ, Java**, and HLASM.

Support for DFP data backed by hardware facilities is

included in z/OS compilers for all of the languages

mentioned above with the exception of COBOL.

Datastores

For the purpose of this discussion, datastores can be

divided into those that have schema and those that do

not. Schema is metadata maintained by the datastore that

describes the content of the data. Datastores without

schema can be used by applications to store and retrieve

arbitrary data without enhancement to the datastore

itself, assuming appropriate data definitions are available

in the programming languages used to implement the

applications. This includes floating-point data, which

includes DFP data. File systems and datasets supported

by IBM access methods can be readily used to store and

retrieve DFP data without further enhancement. The

same observation applies to the IBM IMS* (Information

Management System) database and the IBM VSAM

(Virtual Storage Access Method) database supported by

IBM CICS* (Customer Information Control System).

Datastores with schema require specific enhancement to

the datastore to add support for new data types. This is

the case with IBM DB2* for z/OS, a critical component in

commercial applications for the System z platform. Such

support has been added to DB2 and the SQL (Structured

Query Language) used to store and retrieve data.

Application-hosting environments

There are a number of application-hosting environments

in the z/OS operating system. Environments provided by

IBM can support applications that utilize DFP data and

computation. A partial list includes Batch, Time Sharing

Option (TSO), UNIX** System Services (USS), IMS,

CICS, and IBM WebSphere*. CICS has additional

considerations.

Middleware

DFP data is added as a fully supported DB2 data type,

DECFLOAT, which is the built-in data type for z/OS

version 9 [15]. DFP data types are defined in SQL for

DB2. DB2 supports the 8- and 16-byte data formats, but

not the 4-byte format. The Query Management Facility

products for TSO/CICS and for WebSphere also support

the DECFLOAT data type.

Language runtime support

IBM Language Environment* [16] for z/OS supports the

C Runtime Library. A set of intrinsic functions that

perform computations using the HDFP instructions has

been provided, beginning in z/OS release 9. The

remainder of these functions will be delivered in the

future. They will be used and invoked by code generated

by the compilers for all of the programming languages

except Java. Language Environment also supports the

extended state saved and restored by the OS and, for

problem determination purposes, provides it to

application-hosting environments or directly to problem

determination tools. In addition, Language Environment

initializes the contents of the FPC (floating-point control)

word at the initialization of application programs.

Programming languages

C/Cþþ—The z/OS C/Cþþ compilers allow the user to

generate C/Cþþ applications that perform appropriate

computations on DFP data using the HDFP instructions

included with the z10 processor. The support is delivered

with the C/Cþþ compilers that are part of z/OS release 9

[17, 18]. The compiler DFP option of C and Cþþ enables

the data types _Decimal32, _Decimal64, and

_Decimal128. The ARCH [17, 18] directive to the

compiler, which specifies the instruction set to be used in

the generated program, must be set to 7 or more to enable

the use of the DFP option.

Java—Java supports decimal data through the

BigDecimal class library. On a z10 processor, the Java

Just-in-Time (JIT) compiler associated with the Java 6

JVM** (Java Virtual Machine) generates HDFP

instructions to implement this class library for existing

and new programs. The performance of the parts of an

application using the BigDecimal class library running on

a z10 platform will improve over the same application

hosted on an earlier System z machine more than the

basic difference between the instruction execution speed

of the machines as a result of the use of HDFP

instructions. The magnitudes of those improvements are

unpredictable and related to the intensity of use of

BigDecimal data.

PL/1—The Enterprise PL/1 compiler has added

support for HDFP in release 3.7, which was first shipped

in early October 2007. The PL/1 language has had a

DECIMAL FLOAT data type since its creation. A new

suboption of the FLOAT option is DFPjNODFP. If it is

set to DFP, the compiler treats DECIMAL FLOAT data

such that it is handled internally using the HDFP data

formats and is processed using the new instructions in the

hardware. To create programs that take advantage of the

new instructions, data formats, and capabilities, existing

programs will have to be recompiled using the new

suboption and an ARCH level specification of 7. Some
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new built-in functions have been added and others have

been updated. An accommodation is made for some

library functions for which an HDFP version has not yet

been provided [19, 20].

Debuggers

Debugger support for HDFP involves being able to

display DFP data stored in main storage or in the FPRs.

The FPRs represent a challenge, as they are used to

contain floating-point data from all three floating-point

systems in the System z platform. The debuggers display

the data in the format specified by the user or in

hexadecimal digits. The debuggers also allow the user to

specify that main storage or FPR content is to be

changed. The value it is changed to is floating-point-

system dependent. DFP formats have recently been added

to both The Open Group dbx debugger and the IBM

Debug Tool. This support is quite important because of

the internal usage in the hardware of the DPD format to

encode DFP data.

Dbx—Dbx is the standard UNIX debugger that is

shipped with z/OS. It is used to debug programs written

in C/Cþþ or HLASM that are hosted in the UNIX

System Services environment within z/OS. Its HDFP

support was provided in z/OS release 9.

Debug Tool—Debug Tool is an optional IBM program

product made available as a standalone product or as an

option with some z/OS compiler program products. It is

the debugger used to debug applications compiled by

Enterprise COBOL and Enterprise PL/1. It can be used to

debug HLASM and XL C or Cþþ programs. It debugs

programs that are compiled with these languages and

hosted in many of the z/OS application-hosting

environments. This includes batch, TSO, IMS, CICS, and

USS. Debug Tool added support for DFP in version 8

release 1, made generally available in October 2007.

Application-hosting environments

Batch—Batch applications written in HLASM, XL

C/Cþþ, Enterprise PL/1, or Java can be written to use

DFP data and the HDFP instructions. These programs

can use the support provided in DB2 version 9 to store in,

retrieve from, and query DFP data in DB2.

USS—USS applications written in HLASM, XL

C/Cþþ, Enterprise PL/1, and Java can be written to use

DFP data and the HDFP instructions. These programs

can use the support provided in DB2 version 9 to store in,

retrieve from, and query DFP data in DB2.

TSO—TSO applications written in HLASM, XL

C/Cþþ, Enterprise PL/1, and Java can be written to use

DFP data and the HDFP instructions. These programs

can use the support provided in DB2 version 9 to store in,

retrieve from, and query DFP data in DB2.

IMS—IMS applications written in HLASM, XL

C/Cþþ, Enterprise PL/1, and Java can be written to use

DFP data and the HDFP instructions. These programs

can use the support provided in DB2 version 9 to store in,

retrieve from, and query DFP data in DB2. They can

natively store and retrieve data from IMS databases.

CICS—CICS applications written in HLASM, XL

C/Cþþ, Enterprise PL/1, and Java can be written to use

DFP data and the HDFP instructions if certain compiler

options are used and certain precautions taken. For C,

Cþþ, and PL/1 programs, the compiler suboption

AFP(VOLATILE) must be used. Programs written in

HLASM must save the FPRs used and the FPC, as CICS

does not save them across CICS application context

switches. These programs can use the support provided in

DB2 version 9 to store in, retrieve from, and query DFP

data in DB2. They can natively store and retrieve DFP

data from CICS VSAM databases.

DB2—In addition to its role as a datastore, DB2 hosts

applications known as stored procedures. Stored

procedures may be written in HLASM, XL C/Cþþ,
Enterprise PL/1, and Java to use DFP data. HLASM

applications must be Language Environment-enabled to

run as stored procedures. Stored procedures hosted in

DB2 version 9 can store in, retrieve from, and query DFP

data in the relational database. Other datastores without

schema can also be used by the stored procedures to store

and retrieve DFP data.

WebSphere Application Server—WebSphere

applications are Java programs. To the degree that they

support decimal data, they do it through the BigDecimal

class library. This class library supports decimal data

using the HDFP instructions provided in z10 processors

when compiled by the Java 6 JIT compiler and the

appropriate processor is detected. WebSphere application

programs can use the support provided in DB2 version 9

to store in, retrieve from, and query DFP data in DB2

through the use of Sun JDBC** (Java DataBase

Connectivity) support.

GCC stack for Linux on System z

IBM implements support in the Linux kernel and the

GCC stack but does not distribute Linux for System z.

Distribution is handled by external companies,

specifically Novell and Red Hat. The support for the

GCC stack described below becomes available when the

distributions become available.

Binutils—The new instructions in Linux were added to

binutils 2.18 for support of the assembler, gas, and

objdump. This support is expected to become available in

Novell SUSE** Linux Enterprise 11 (SLES 11) and Red

Hat** Enterprise Linux 6 (RHEL 6) sometime in 2009.

GCC—GCC added support for the new data types,

_Decimal32, _Decimal64, and _Decimal128 in a release
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that was not externalized. The DFP instructions in the z9

processor and the z10 HDFP instructions are included in

the GCC 4.3 compiler, which will be shipped in SLES 11

and RHEL 6, but are available for download [21]. The

options required to use the instructions are -march¼z9-ec
and -mhard-dfp.

Glibc—Glibc implements and contains the intrinsic

library functions using HDFP.

GNU Debugger (GDB)—Support for DFP in C has

been provided in GDB release 6.8 [22], made available for

download in March 2008 [21]. GDB 6.8 will be included

in SLES 11 and RHEL 6 Linux distributions.

Summary
The z10 processor is the first mainframe with hardware

support for the DFP format in the IEEE 754-2008

floating-point standard. It joins the IBM POWER6

processor-based System p 570 server as the only hardware

support available for this format. Commercial

applications require a decimal format and will greatly

benefit from this new format. The direct hardware

support for DFP arithmetic is also backed by extensive

support in software for these data types. OSs, debuggers,

programming languages, middleware, and application-

hosting environments have been enhanced as required to

support this new data type. This provides clients with

complete stacks to develop and deploy applications that

can take advantage of the DFP facilities introduced with

the z9 Enterprise Class and Business Class processors and

improved in the z10 processor.
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